题意

有\(n\)个严格升序的数,请你分成两个集合\(A\)和\(B\),其中一个集合任意两数之差不小于\(x\),另一集合任意两数之差不小于\(y\)。

问方案数,集合可以为空。

$n \le 10^5 $

传送门

思路

又是一道神仙\(dp\)

设\(dp_i\)表示当前\(B\)集合的最后一个数是\(a_i\)的方案数。

如果暴力转移就是:$$dp_i=\sum_{j<i & a_i-a_j\ge y}dp_j$$

并且满足区间\([j+1,i-1]\)能够放在\(A\)集合中

可以发现,满足条件的\(j\)是一个区间,因此前缀和优化,最后把答案累加起来就好了。

代码十分简短

#include <bits/stdc++.h>
const int N=100005,mu=1000000007;
int n,s[N],dp[N],l=0,r=0;
long long x,y,a[N];
int main(){
scanf("%d%lld%lld",&n,&x,&y);
for (int i=1;i<=n;i++) scanf("%lld",&a[i]);
if (x>y) std::swap(x,y);
for (int i=1;i+2<=n;i++)
if (a[i+2]-a[i]<x){
puts("0");return 0;
}
dp[0]=s[0]=1;
for (int i=1;i<=n;i++){
while (a[i]-a[r+1]>=y && r<i-1) r++;
if (l<=r){
if (l) dp[i]=(s[r]-s[l-1]+mu)%mu;
else dp[i]=s[r];
}
if (a[i]-a[i-1]<x) l=i-1;
s[i]=(s[i-1]+dp[i])%mu;
}
int ans=0;
for (int i=n;i>=0;i--){
ans=(ans+dp[i])%mu;
if (a[i+1]-a[i]<x && i<n) break;
}
printf("%d",ans);
}

后记

我好菜啊。以后写\(Atcoder \space dp\)的时候都可以加上思路的第一和最后一句了

AGC009C Division into Two的更多相关文章

  1. [AGC009C]Division into 2

    题意: 有一个长度为$N$的递增序列$S_i$,要把它分成$X,Y$两组,使得$X$中元素两两之差不小于$A$且$Y$中元素两两之差不小于$B$,求方案数 首先考虑$O\left(n^2\right) ...

  2. 【AGC009C】Division into Two

    [AGC009C]Division into Two 题面 洛谷 题解 首先有一个比较显然的\(n^2\)算法: 设\(f_{i,j}\)表示\(A\)序列当前在第\(i\)个,\(B\)序列当前在第 ...

  3. python from __future__ import division

    1.在python2 中导入未来的支持的语言特征中division(精确除法),即from __future__ import division ,当我们在程序中没有导入该特征时,"/&qu ...

  4. [LeetCode] Evaluate Division 求除法表达式的值

    Equations are given in the format A / B = k, where A and B are variables represented as strings, and ...

  5. 关于分工的思考 (Thoughts on Division of Labor)

    Did you ever have the feeling that adding people doesn't help in software development? Did you ever ...

  6. POJ 3140 Contestants Division 树形DP

    Contestants Division   Description In the new ACM-ICPC Regional Contest, a special monitoring and su ...

  7. 暴力枚举 UVA 725 Division

    题目传送门 /* 暴力:对于每一个数都判断,是否数字全都使用过一遍 */ #include <cstdio> #include <iostream> #include < ...

  8. GDC2016【全境封锁(Tom Clancy's The Division)】对为何对应Eye Tracked System,以及各种优点的演讲报告

    GDC2016[全境封锁(Tom Clancy's The Division)]对为何对应Eye Tracked System,以及各种优点的演讲报告 原文 4Gamer編集部:松本隆一 http:/ ...

  9. Leetcode: Evaluate Division

    Equations are given in the format A / B = k, where A and B are variables represented as strings, and ...

随机推荐

  1. .NET Core 使用ModelBinder去掉所有参数的空格

    一.前言 通过各种姿势搜索都没搜到这方面的,唯一找到一个比较符合的,但是只适合简单类型,而且代码还没贴全,心累.. 然后查看官网和源码之后,发现继承并实现 IModelBinder和IModelBin ...

  2. IP-reputation feature

    IP-reputation feature https://blog.norz.at/citrix-netscaler-ip-reputation-feature/ I recently had to ...

  3. kong网关命令(一)

    上次在虚拟机里安装kong网关后,因为版本(1.4)太高,目前Kong Dashboard无法支持, 后续发现Git上有个开源工具Kong admin ui,下载源码并部署到NGINX. 但是发现使用 ...

  4. C++ STL 之 常用算法

    #include <iostream> #include <vector> #include <algorithm> using namespace std; // ...

  5. 完整的ELK+filebeat+kafka笔记

    之前有写过elasticsearch集群和elk集群的博客, 都是基于docker的,使用docker-compose进行编排(K8S暂未掌握) 三台服务器搭建es集群:https://www.cnb ...

  6. bash基础——grep、基本正则表达式、扩展正则表达式、fgrep

    grep grep全称:Globally search a Regular Expression and Print 全局搜索正则表达式 正规表达式本质上是一种"表示方法", 只要 ...

  7. Linux命令——cat、more、less、head、tail

    cat 一次显示整个文件 -n:显示行号 -b :和 -n 相似,只不过对于空白行不编号 -s:当遇到有连续两行以上的空白行,就代换为一行的空白行 -E显示换行符 [root@localhost ~] ...

  8. Python一些细节

    1.python set() dict() 有序问题,不同版本之间的差异,与Java/C++的对比 https://www.cnblogs.com/niuxichuan/p/11608386.html ...

  9. pandas库介绍之DataFrame基本操作

    怎样删除list中空字符? 最简单的方法:new_list = [ x for x in li if x != '' ] 今天是5.1号. 这一部分主要学习pandas中基于前面两种数据结构的基本操作 ...

  10. Nginx 配置参数中文说明

    Nginx配置参数中文详细说明: #定义Nginx运行的用户和用户组 user www www; # #nginx进程数,建议设置为等于CPU总核心数. worker_processes ; # #全 ...