1250 Fibonacci数列(矩阵乘法)
1250 Fibonacci数列
时间限制: 1 s
空间限制: 128000 KB
题目等级 : 钻石 Diamond
题目描述 Description
定义:f0=f1=1, fn=fn-1+fn-2(n>=2)。{fi}称为Fibonacci数列。
输入n,求fn mod q。其中1<=q<=30000。
输入描述 Input Description
第一行一个数T(1<=T<=10000)。
以下T行,每行两个数,n,q(n<=109, 1<=q<=30000)
输出描述 Output Description
文件包含T行,每行对应一个答案。
样例输入 Sample Input
3
6 2
7 3
7 11
样例输出 Sample Output
1
0
10
数据范围及提示 Data Size & Hint
1<=T<=10000
n<=109, 1<=q<=30000
分类标签 Tags
矩阵乘法 数论
/*
矩阵乘法快速幂.
*/
#include<iostream>
#include<cstdio>
#define MAXN 3
#define LL long long
using namespace std;
LL p,q,a1,a2,n,m;
LL a[MAXN][MAXN],ans[MAXN][MAXN],c[MAXN][MAXN],b[MAXN][MAXN];
LL read()
{
LL x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9') {if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
return x*f;
}
void mi(int n)
{
while(n)
{
if(n&1)
{
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
for(int k=1;k<=2;k++)
c[i][j]=(c[i][j]+ans[i][k]*b[k][j]%m)%m;
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
ans[i][j]=c[i][j],c[i][j]=0;
}
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
for(int k=1;k<=2;k++)
c[i][j]=(c[i][j]+b[i][k]*b[k][j]%m)%m;
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
b[i][j]=c[i][j],c[i][j]=0;
n>>=1;
}
}
void slove()
{
a[1][1]=1,a[1][2]=2;
b[1][2]=ans[1][2]=1,b[2][1]=ans[2][1]=1;
b[1][1]=ans[1][1]=0;
b[2][2]=ans[2][2]=1;
mi(n);
printf("%d\n",(ans[1][1]+ans[2][1])%m);
}
int main()
{
int t;
t=read();
while(t--)
{
n=read();m=read();
n--;
slove();
}
return 0;
}
1250 Fibonacci数列(矩阵乘法)的更多相关文章
- CODEVS1533 Fibonacci数列 (矩阵乘法)
嗯,,,矩阵乘法最基础的题了. Program CODEVS1250; ..,..] of longint; var T,n,mo:longint; a,b:arr; operator *(a,b:a ...
- 矩阵乘法快速幂 codevs 1250 Fibonacci数列
codevs 1250 Fibonacci数列 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description 定义:f0=f1=1 ...
- 1250 Fibonacci数列(矩阵乘法快速幂)
1250 Fibonacci数列 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description 定义:f0=f1=1, f ...
- 1250 Fibonacci数列
1250 Fibonacci数列 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题解 查看运行结果 题目描述 Description 定义:f ...
- 斐波那契数列 矩阵乘法优化DP
斐波那契数列 矩阵乘法优化DP 求\(f(n) \%1000000007\),\(n\le 10^{18}\) 矩阵乘法:\(i\times k\)的矩阵\(A\)乘\(k\times j\)的矩 ...
- 【wikioi】1250 Fibonacci数列(矩阵乘法)
http://wikioi.com/problem/1250/ 我就不说这题有多水了. 0 1 1 1 矩阵快速幂 #include <cstdio> #include <cstri ...
- [codevs]1250斐波那契数列<矩阵乘法&快速幂>
题目描述 Description 定义:f0=f1=1, fn=fn-1+fn-2(n>=2).{fi}称为Fibonacci数列. 输入n,求fn mod q.其中1<=q<=30 ...
- Loj10222 佳佳的Fibonacci(矩阵乘法)
题面 给定\(n,m\),求: \[ T(n)=\sum_{i=1}^ni\times f_i \] 其中\(f_i\)为斐波那契数列的第\(i\)项 题解 不妨设: \[ S(n)=\sum_{i= ...
- P1349 广义斐波那契数列(矩阵乘法)
题目 P1349 广义斐波那契数列 解析 把普通的矩阵乘法求斐波那契数列改一改,随便一推就出来了 \[\begin{bmatrix}f_2\\f_1 \end{bmatrix}\begin{bmatr ...
随机推荐
- 轻松搭建CAS 5.x系列(1)-使用cas overlay搭建SSO SERVER服务端
概要说明 cas的服务端搭建有两种常用的方式: 1. 基于源码的基础上构建出来的 2. 使用WAR overlay的方式来安装 官方推荐使用第二种,配置管理方便,以后升级也容易.本文就是使用第 ...
- RedHat7 配置yum源
今天需要搭建一个测试环境,没办法只能找了个Linux服务器,但是之前的其他同事弄过是其他系统的,不是centos的,所以只能自己搞. 合计直接百度,怎么安装docker,结果一直报错,下载失败之类的 ...
- ASP.NET Core中间件实现分布式 Session(转载)
ASP.NET Core中间件实现分布式 Session 1. ASP.NET Core中间件详解 1.1. 中间件原理 1.1.1. 什么是中间件 1.1.2. 中间件执行过程 1.1.3. 中间件 ...
- LeetCode:197.上升的温度
题目链接:https://leetcode-cn.com/problems/rising-temperature/ 题目 给定一个 Weather 表,编写一个 SQL 查询,来查找与之前(昨天的)日 ...
- koa 实现session登陆
在我们访问一些网站内部内容的时候,通常都会先验证我们是否已经登陆,如果登陆了就跳转到内容页面否则就跳转或者弹出登陆页面. 但是HTTP协议是没有状态的协议,无法标识一个用户的登录状态. 于是Cooki ...
- vue+element-ui 项目中实现复制文字链接功能
需求: 点击复制按钮,复制一个链接 在GitHub上找到一个clipboard组件,功能比较齐全 使用方法: 安装 npm i clipboard --save HTML <template ...
- 好好讲一讲,到底什么是Java高级架构师!
一. 什么是架构师 曾经有这么个段子: 甲:我已经应聘到一家中型软件公司了,今天上班的时候,全公司的人都来欢迎我. 乙:羡慕ing,都什么人来了? 甲:CEO.COO.CTO.All of 程序员,还 ...
- Packet for query is too large (4,544,730 > 4,194,304). You can change this value on the server by setting the 'max_allowed_packet' variable.
修改 my.ini 加上 max_allowed_packet =6710886467108864=64M默认大小4194304 也就是4M修改完成之后要重启mysql服务,如果通过命令行修改就不用 ...
- Airflow安装异常:ERROR: flask-appbuilder 1.12.3 has requirement Flask<2,>=0.12, but you'll have flask 0.11.1 which is incompatible.
1 详细异常: ERROR: flask-appbuilder 1.12.3 has requirement Flask<2,>=0.12, but you'll have flask 0 ...
- 学习笔记:自己编译安装OpenCV+测试opencv安装是否成功
1. 安装编译依赖的软件包 # 安装读写不同图片类型的库: sudo apt-get install libjpeg8-dev libtiff4-dev libjasper-dev libpng12- ...