# ====================LeNet-5_main.py===============
# pytorch+torchvision+visdom
 # -*- coding: utf-8 -*-
"""
Created on Sun May 26 22:53:52 2019 @author: jiangshan
"""
#A modified LeNet-5 [LeCun et al., 1998a] on the MNIST dataset.
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision.datasets.mnist import MNIST
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
import visdom
from collections import OrderedDict class LeNet5(nn.Module):
"""
Input - 1x32x32
C1 - 6@28x28 (5x5 kernel)
relu
S2 - 6@14x14 (2x2 kernel, stride 2) Subsampling
C3 - 16@10x10 (5x5 kernel, complicated shit)
relu
S4 - 16@5x5 (2x2 kernel, stride 2) Subsampling
C5 - 120@1x1 (5x5 kernel)
F6 - 84
relu
F7 - 10 (Output)
"""
def __init__(self):
super(LeNet5, self).__init__() self.convnet = nn.Sequential(OrderedDict([
('c1', nn.Conv2d(1, 6, kernel_size=(5, 5))),
('relu1', nn.ReLU()),
('s2', nn.MaxPool2d(kernel_size=(2, 2), stride=2)),
('c3', nn.Conv2d(6, 16, kernel_size=(5, 5))),
('relu3', nn.ReLU()),
('s4', nn.MaxPool2d(kernel_size=(2, 2), stride=2)),
('c5', nn.Conv2d(16, 120, kernel_size=(5, 5))),
('relu5', nn.ReLU())
])) self.fc = nn.Sequential(OrderedDict([
('f6', nn.Linear(120, 84)),
('relu6', nn.ReLU()),
('f7', nn.Linear(84, 10)),
('sig7', nn.LogSoftmax(dim=-1))
])) def forward(self, img):
output = self.convnet(img)
output = output.view(img.size(0), -1)
output = self.fc(output)
return output viz = visdom.Visdom()
data_train = MNIST('./data/mnist',
download=True,
transform=transforms.Compose([
transforms.Resize((32, 32)),
transforms.ToTensor()]))
data_test = MNIST('./data/mnist',
train=False,
download=True,
transform=transforms.Compose([
transforms.Resize((32, 32)),
transforms.ToTensor()]))
data_train_loader = DataLoader(data_train, batch_size=256, shuffle=True, num_workers=8)
data_test_loader = DataLoader(data_test, batch_size=1024, num_workers=8) net = LeNet5()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=2e-3) cur_batch_win = None
cur_batch_win_opts = {
'title': 'Epoch Loss Trace',
'xlabel': 'Batch Number',
'ylabel': 'Loss',
'width': 1200,
'height': 600,
} def train(epoch):
global cur_batch_win
net.train()
loss_list, batch_list = [], []
for i, (images, labels) in enumerate(data_train_loader):
optimizer.zero_grad() output = net(images) loss = criterion(output, labels) loss_list.append(loss.detach().cpu().item())
batch_list.append(i+1) if i % 10 == 0:
print('Train - Epoch %d, Batch: %d, Loss: %f' % (epoch, i, loss.detach().cpu().item())) # Update Visualization
if viz.check_connection():
cur_batch_win = viz.line(torch.Tensor(loss_list), torch.Tensor(batch_list),
win=cur_batch_win, name='current_batch_loss',
update=(None if cur_batch_win is None else 'replace'),
opts=cur_batch_win_opts)
loss.backward()
optimizer.step() def test():
net.eval()
total_correct = 0
avg_loss = 0.0
for i, (images, labels) in enumerate(data_test_loader):
output = net(images)
avg_loss += criterion(output, labels).sum()
pred = output.detach().max(1)[1]
total_correct += pred.eq(labels.view_as(pred)).sum() avg_loss /= len(data_test)
print('Test Avg. Loss: %f, Accuracy: %f' % (avg_loss.detach().cpu().item(), float(total_correct) / len(data_test))) def train_and_test(epoch):
train(epoch)
test() def main():
for e in range(1, 16):
train_and_test(e) if __name__ == '__main__':
main()

先开启visdom 进行可视化

python -m visdom.server

运行程序

python LeNet-5_main.py

打开浏览器查看live graph

http://localhost:8097

LeNet-5 pytorch+torchvision+visdom的更多相关文章

  1. 『PyTorch』第四弹_通过LeNet初识pytorch神经网络_下

    『PyTorch』第四弹_通过LeNet初识pytorch神经网络_上 # Author : Hellcat # Time : 2018/2/11 import torch as t import t ...

  2. Linux服务器配置GPU版本的pytorch Torchvision TensorFlow

    最近在Linux服务器上配置项目,项目需要使用GPU版本的pytorch和TensorFlow,而且该项目内会同时使用TensorFlow的GPU和CPU. 在服务器上装环境,如果重新开始,就需要下载 ...

  3. pytorch的visdom启动不了、蓝屏

    pytorch的visdom启动不了.蓝屏 问题描述:我是在ubuntu16.04上用python3.5安装的visdom.可是启动是蓝屏:在网上找了很久的解决方案:有三篇博文: https://bl ...

  4. 云服务器搭建anaconda pytorch torchvision

    (因为在普通用户上安装有些权限问题安装出错,所以我在root用户下相对容易安装,但是anaconda官网说可以直接在普通用户下安装,不过,在root下安装,其他用户也是能用的. 访问Anaconda官 ...

  5. Pytorch Torchvision Transform

    Torchvision.Transforms Transforms包含常用图像转换操作.可以使用Compose将它们链接在一起. 此外,还有torchvision.transforms.functio ...

  6. pytorch torchvision.ImageFolder的使用

    参考:https://pytorch-cn.readthedocs.io/zh/latest/torchvision/torchvision-datasets/ torchvision.dataset ...

  7. pytorch torchvision对图像进行变换

    class torchvision.transforms.Compose(转换) 多个将transform组合起来使用. class torchvision.transforms.CenterCrop ...

  8. 『PyTorch』第四弹_通过LeNet初识pytorch神经网络_上

    总结一下相关概念: torch.Tensor - 一个近似多维数组的数据结构 autograd.Variable - 改变Tensor并且记录下来操作的历史记录.和Tensor拥有相同的API,以及b ...

  9. PyTorch常用代码段整理合集

    PyTorch常用代码段整理合集 转自:知乎 作者:张皓 众所周知,程序猿在写代码时通常会在网上搜索大量资料,其中大部分是代码段.然而,这项工作常常令人心累身疲,耗费大量时间.所以,今天小编转载了知乎 ...

随机推荐

  1. 【原创】go语言学习(六)函数详解2

    目录 变量作用域和可见性 匿名函数 闭包 课后练习 变量作用域和可见性 1.全局变量量,在程序整个生命周期有效. var a int = 10 2.局部变量量,分为两种: 1)函数内定义, 2)语句句 ...

  2. 浅谈无旋treap(fhq_treap)

    一.简介 无旋Treap(fhq_treap),是一种不用旋转的treap,其代码复杂度不高,应用范围广(能代替普通treap和splay的所有功能),是一种极其强大的平衡树. 无旋Treap是一个叫 ...

  3. BZOJ3236作业

    这东西是个应用为O(logn)的莫队. 正常莫队的updata函数转移是O(1)的,可这个题时间非常宽泛,可以套两个树状数组,那两个东西很好维护,第一个直接普通权值树状数组维护,第二个开一个桶,记录当 ...

  4. JavaString在虚拟机中的实现

    1.String在虚拟机中的实现 特点: ① 不变性,是在多线程的访问中,保持对象的不变性的话就不需要实现同步,省略了同步和锁的等待时间.提高了多线程的访问性能,堆所有想成都是只读的.它的修改操作都是 ...

  5. RK3399 4G模块移远EC20移植调试

    转载请注明出处:https://www.cnblogs.com/lialong1st/p/11266330.html CPU:RK3399 系统:Android 7.1 1.通过串口打印或者adb获取 ...

  6. Messagebox自定义计时关闭

    Messagebox自定义计时关闭 新建Winform项目WindowsFormsAppTESTMessageBoxAutoClose 主窗体代码 using System;using System. ...

  7. Uploadifive 上传'fileType'格式如何限制?

    Uploadifive: 'fileType':[ "application/pdf", "application/msword", "applica ...

  8. Windows服务器下,Tomcat制作成服务自启动,跑不起来,报内存溢出。

    测试过不行 使用服务启动后,tomcat运行时会抛出各种内存溢出错误,于是我第一时间想到的是去修改catalina.bat文件中的内存设置,但是然并卵,于是我又尝试不用服务,去使用startup.ba ...

  9. element-ui框架的el-dialog弹出框被遮罩层挡住了

    解决办法 在el-dialog标签里添加 :modal-append-to-body='false'

  10. 各种Android UI开源框架 开源库

    各种Android UI开源框架 开源库 转 https://blog.csdn.net/zhangdi_gdk2016/article/details/84643668 自己总结的Android开源 ...