BZOJ5306 [Haoi2018]染色


Solution

xzz的博客

代码实现

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<algorithm>
#include<queue>
#include<set>
#include<map>
#include<iostream>
using namespace std;
#define ll long long
#define re register
#define file(a) freopen(a".in","r",stdin);freopen(a".out","w",stdout)
inline int gi()
{
    int f=1,sum=0;char ch=getchar();
    while(ch>'9' || ch<'0'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0' && ch<='9'){sum=(sum<<3)+(sum<<1)+ch-'0';ch=getchar();}
    return f*sum;
}
const int N=500010,Mod=1004535809,G=3;
int r[N],fac[10000010],n,m,s,W[N],a[N],b[N];
int qpow(int a,int b){int ret=1;while(b){if(b&1)ret=(ll)ret*a%Mod;a=(ll)a*a%Mod;b>>=1;}return ret;}
void NTT(int limit,int type,int *A)
{
    for(int i=0;i<limit;i++)if(i<r[i])swap(A[i],A[r[i]]);
    for(int i=1;i<limit;i<<=1)
    {
        int gn=qpow(G,(Mod-1)/(i<<1));
        for(int j=0;j<limit;j+=(i<<1))
        {
            int g=1;
            for(int k=0;k<i;k++,g=(ll)g*gn%Mod)
            {
                int t1=A[j+k],t2=(ll)g*A[i+j+k]%Mod;
                A[j+k]=(t1+t2)%Mod;A[i+j+k]=(t1-t2+Mod)%Mod;
            }
        }
    }
    if(type==-1)
    {
        int inv=qpow(limit,Mod-2);reverse(A+1,A+limit);
        for(int i=0;i<limit;i++)A[i]=(ll)A[i]*inv%Mod;
    }
}
int C(int n,int m)
{
    return (ll)fac[n]*qpow(fac[m],Mod-2)%Mod*qpow(fac[n-m],Mod-2)%Mod;
}
int main()
{
    n=gi();m=gi();s=gi();
    for(int i=0;i<=m;i++)W[i]=gi();
    fac[0]=1;
    for(int i=1;i<=max(n,m);i++)
        fac[i]=(ll)fac[i-1]*i%Mod;
    int lim=min(m,n/s);
    int limit=1,l=0;
    while(limit<(lim+1<<1))limit<<=1,l++;
    for(int i=0;i<limit;i++)
        r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
    for(int i=0;i<=lim;i++)
        a[i]=(ll)fac[i]*C(m,i)%Mod*fac[n]%Mod*qpow(m-i,n-i*s)%Mod*qpow((1ll*fac[n-i*s]*qpow(fac[s],i)%Mod),Mod-2)%Mod;
    for(int i=0;i<=lim;i++)
    {
        b[i]=qpow(fac[lim-i],Mod-2);
        if((lim-i)&1)b[i]=Mod-b[i];
    }
    NTT(limit,1,a);
    NTT(limit,1,b);
    for(int i=0;i<limit;i++)a[i]=1ll*a[i]*b[i]%Mod;
    NTT(limit,-1,a);
    int ans=0;
    for(int i=0;i<=lim;i++)
        ans=(ans+(ll)W[i]*a[lim+i]%Mod*qpow(fac[i],Mod-2)%Mod)%Mod;
    printf("%d\n",ans);
    return 0;
}

【BZOJ5306】 [Haoi2018]染色的更多相关文章

  1. [BZOJ5306] [HAOI2018]染色(容斥原理+NTT)

    [BZOJ5306] [HAOI2018]染色(容斥原理+NTT) 题面 一个长度为 n的序列, 每个位置都可以被染成 m种颜色中的某一种. 如果n个位置中恰好出现了 S次的颜色有 K种, 则小 C ...

  2. BZOJ5306 HAOI2018染色(容斥原理+NTT)

    容易想到枚举恰好出现S次的颜色有几种.如果固定至少有i种恰好出现S次,那么方案数是C(M,i)·C(N,i*S)·(M-i)N-i*S·(i*S)!/(S!)i,设为f(i). 于是考虑容斥,可得恰好 ...

  3. [BZOJ5306][HAOI2018]染色

    bzoj luogu Description 给一个长度为\(n\)的序列染色,每个位置上可以染\(m\)种颜色.如果染色后出现了\(S\)次的颜色有\(k\)种,那么这次染色就可以获得\(w_k\) ...

  4. BZOJ5306 [HAOI2018]染色 【组合数 + 容斥 + NTT】

    题目 为了报答小 C 的苹果, 小 G 打算送给热爱美术的小 C 一块画布, 这块画布可 以抽象为一个长度为 \(N\) 的序列, 每个位置都可以被染成 \(M\) 种颜色中的某一种. 然而小 C 只 ...

  5. [BZOJ5306][HAOI2018]染色(容斥+FFT)

    https://www.cnblogs.com/zhoushuyu/p/9138251.html 注意如果一开始F(i)中内层式子中j枚举的是除前i种颜色之外还有几种出现S次的颜色,那么后面式子就会难 ...

  6. 【BZOJ5306】[HAOI2018]染色(NTT)

    [BZOJ5306]染色(NTT) 题面 BZOJ 洛谷 题解 我们只需要考虑每一个\(W[i]\)的贡献就好了 令\(lim=min(M,\frac{N}{S})\) 那么,开始考虑每一个\(W[i ...

  7. BZOJ 5306 [HAOI2018] 染色

    BZOJ 5306 [HAOI2018] 染色 首先,求出$N$个位置,出现次数恰好为$S$的颜色至少有$K$种. 方案数显然为$a_i=\frac{n!\times (m-i)^{m-i\times ...

  8. [洛谷P4491] [HAOI2018]染色

    洛谷题目链接:[HAOI2018]染色 题目背景 HAOI2018 Round2 第二题 题目描述 为了报答小 C 的苹果, 小 G 打算送给热爱美术的小 C 一块画布, 这块画布可 以抽象为一个长度 ...

  9. 【LG4491】[HAOI2018]染色

    [LG4491][HAOI2018]染色 题面 洛谷 题解 颜色的数量不超过\(lim=min(m,\frac nS)\) 考虑容斥,计算恰好出现\(S\)次的颜色至少\(i\)种的方案数\(f[i] ...

随机推荐

  1. redis2

    一.安装redis 1)     下载redis安装包 可去官网http://redis.io ,也可通过wget命令, wget http://download.redis.io/redis-sta ...

  2. linux下面/usr/local和opt目录有何区别

    /usr/local下一般是你安装软件的目录,这个目录就相当于在windows下的programefiles这个目录 .很多应用都安装在/usr/local下面,那么,这些应用为什么选择这个目录呢?答 ...

  3. Quartz(强大的定时器)

    1.关于Quartz的配置文件说明 # # Quartz会优先读取项目下我们自定义这个quartz.properties配置文件 否则会去读取quartzjar包下org.quatrz包# 下面的那个 ...

  4. Sprign中常用注解

    1.@Component 创建类对象,相当于配置<bean/> 2.@Service 与 @Component功能相同 2.1写在ServiceImpl类上 (建议在ServiceImpl ...

  5. 2018.10.23 hdu2476String painter(区间dp)

    传送门 一道挺妙的区间dp. 我们先用区间dp求出第一个串为空串时的最小代价. 然后再加入原本的字符更新答案就行了. 代码: #include<bits/stdc++.h> using n ...

  6. 2018.06.26 NOIP模拟 号码(数位dp)

    题目背景 SOURCE:NOIP2015-GDZSJNZX(难) 题目描述 Mike 正在在忙碌地发着各种各样的的短信.旁边的同学 Tom 注意到,Mike 发出短信的接收方手机号码似乎都满足着特别的 ...

  7. poj-3928(树状数组)

    题目链接:传送门 题意:n个乒乓球运动员要互相练习,都去一个运动员那里比赛,举办训练的运动员不能水平最高或最低. 现在给出n个运动员的水平,求出最终有多少种组合. 思路:先对运动员进行离散化,然后进行 ...

  8. vue-cli项目中使用rem

    1.安装px2rem插件 npm install px2rem-loader lib-flexible --save 2.在main.js中引入lib-flexible import 'lib-fle ...

  9. VESA时序与BT1120的区别

    在实现内嵌传输的过程中,笔者参考VESA的时序,也就是下图,实现了一个内嵌同步的程序,同步码放在H Back Porch与H Front Porch的后端与前端,但是在传输过程中发现接收端画面不正常. ...

  10. js基础学习笔记(一)

    * 在js编写过程中,尽量保持统一使用单引号 'XXXX': * 所有变量都要声明 var,避免全局函数调用的冲突: 1.1    输出内容 docment.write(‘aileLi’); 改变某I ...