NOI.AC NOIP模拟赛 第四场 补记

子图

题目大意:

一张\(n(n\le5\times10^5)\)个点,\(m(m\le5\times10^5)\)条边的无向图。删去第\(i\)条边需要\(w_i\)的代价。现在要通过删去一些边,使得剩下的满足对于这个图的任意一些点,这些点之间互联的边数小于这些点的总点数。求总代价最小值

思路:

不难发现答案为整张图代价和-最大生成森林代价和。

时间复杂度\(\mathcal O(m\alpha(n))\)。

源代码:

#include<cstdio>
#include<cctype>
#include<numeric>
#include<algorithm>
#include<functional>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
typedef long long int64;
const int N=5e5+1,M=5e5;
struct Edge {
int u,v,w;
bool operator > (const Edge &rhs) const {
return w>rhs.w;
}
};
Edge e[M];
class DisjointSet {
private:
int anc[N];
int find(const int &x) {
return x==anc[x]?x:anc[x]=find(anc[x]);
}
public:
void reset(const int &n) {
std::iota(&anc[1],&anc[n]+1,1);
}
void merge(const int &x,const int &y) {
anc[find(x)]=find(y);
}
bool same(const int &x,const int &y) {
return find(x)==find(y);
}
};
DisjointSet s;
int main() {
const int n=getint(),m=getint();
int64 ans=0;
for(register int i=0;i<m;i++) {
e[i].u=getint();
e[i].v=getint();
e[i].w=getint();
ans+=e[i].w;
}
s.reset(n);
std::sort(&e[0],&e[m],std::greater<Edge>());
for(register int i=0;i<m;i++) {
const int &u=e[i].u,&v=e[i].v,&w=e[i].w;
if(!s.same(u,v)) {
s.merge(u,v);
ans-=w;
}
}
printf("%lld\n",ans);
return 0;
}

Erlang

题目大意:

一共有\(n(n\le5\times10^5)\)个可重集\(S_i(\sum|S_i|\le5\times10^5)\),每次可以选择一个非空集合,从里面随机抽取一个数,然后把这个数从集合中删掉。当存在两次抽取出来的数相等时结束。求最坏情况下,操作次数的最小值。

思路:

一个结论是,一定存在一种方案,使得总共只抽取两个集合,而且是先抽第一个抽了若干次后再去抽第二个。或者是只抽一个结合。

对于只抽一种集合的情况,直接用抽屉原理算即可。

因此,我们可以将数\(k\)在\(x\)中的最坏抽取次数记作\(c_{k,x}\),对于每个数\(k\),维护最小值和次小值。

枚举第一个集合\(x_1\),将其中的每个数按照在第二个集合中最小抽取次数次数从大到小排序,抽取次数第\(i\)大的数的抽取次数为\(f_i\),答案就是\(\min\{f_i+i\}\)。

时间复杂度\(\mathcal O(\sum|S_i|\log\sum|S_i|)\)。

源代码:

#include<cstdio>
#include<cctype>
#include<climits>
#include<algorithm>
#include<functional>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
const int N=5e5+1;
int a[N],b[N],k[N],cnt[N],num[N],min[N][2],f[N];
int main() {
const int n=getint();
num[0]=INT_MAX;
for(register int i=a[0]=1;i<=n;i++) {
b[i]=a[0];
k[i]=getint();
for(register int j=0;j<k[i];j++) {
a[a[0]++]=getint();
}
std::sort(&a[b[i]],&a[a[0]]);
num[i]=std::unique(&a[b[i]],&a[a[0]])-&a[b[i]];
for(register int j=b[i];j<b[i]+num[i];j++) {
int tmp=i;
if(num[tmp]<num[min[a[j]][0]]) std::swap(tmp,min[a[j]][0]);
if(num[tmp]<num[min[a[j]][1]]) std::swap(tmp,min[a[j]][1]);
}
}
for(register int i=1;i<a[0];i++) cnt[a[i]]++;
for(register int i=1;i<a[0];i++) {
if(cnt[a[i]]>1) goto Next;
}
puts("-1");
return 0;
Next:
if(n==1) {
printf("%d\n",num[1]+1);
return 0;
}
int ans=INT_MAX;
for(register int i=1;i<=n;i++) {
if(k[i]!=num[i]) ans=std::min(ans,num[i]+1);
for(register int j=1;j<=num[i];j++) {
f[j]=num[min[a[b[i]+j-1]][0]!=i?min[a[b[i]+j-1]][0]:min[a[b[i]+j-1]][1]];
}
std::sort(&f[1],&f[num[i]]+1,std::greater<int>());
for(register int j=1;j<=num[i];j++) {
if(f[j]!=INT_MAX) ans=std::min(ans,f[j]+j);
}
}
printf("%d\n",ans);
return 0;
}

NOI.AC NOIP模拟赛 第四场 补记的更多相关文章

  1. NOI.AC NOIP模拟赛 第三场 补记

    NOI.AC NOIP模拟赛 第三场 补记 列队 题目大意: 给定一个\(n\times m(n,m\le1000)\)的矩阵,每个格子上有一个数\(w_{i,j}\).保证\(w_{i,j}\)互不 ...

  2. NOI.AC NOIP模拟赛 第五场 游记

    NOI.AC NOIP模拟赛 第五场 游记 count 题目大意: 长度为\(n+1(n\le10^5)\)的序列\(A\),其中的每个数都是不大于\(n\)的正整数,且\(n\)以内每个正整数至少出 ...

  3. NOI.AC NOIP模拟赛 第六场 游记

    NOI.AC NOIP模拟赛 第六场 游记 queen 题目大意: 在一个\(n\times n(n\le10^5)\)的棋盘上,放有\(m(m\le10^5)\)个皇后,其中每一个皇后都可以向上.下 ...

  4. NOI.AC NOIP模拟赛 第二场 补记

    NOI.AC NOIP模拟赛 第二场 补记 palindrome 题目大意: 同[CEOI2017]Palindromic Partitions string 同[TC11326]Impossible ...

  5. NOI.AC NOIP模拟赛 第一场 补记

    NOI.AC NOIP模拟赛 第一场 补记 candy 题目大意: 有两个超市,每个超市有\(n(n\le10^5)\)个糖,每个糖\(W\)元.每颗糖有一个愉悦度,其中,第一家商店中的第\(i\)颗 ...

  6. [NOI.AC 2018NOIP模拟赛 第三场 ] 染色 解题报告 (DP)

    题目链接:http://noi.ac/contest/12/problem/37 题目: 小W收到了一张纸带,纸带上有 n个位置.现在他想把这个纸带染色,他一共有 m 种颜色,每个位置都可以染任意颜色 ...

  7. NOI.AC NOIP模拟赛R3解题报告

    心路历程 预计得分:\(100+100+50=250\) 实际得分:\(10 +100 +50 = 160\) 三道原题,真好.T2做过,T1写了个错误思路,T3写了写50分状压dp. 整场考试实际在 ...

  8. NOI.AC WC模拟赛

    4C(容斥) http://noi.ac/contest/56/problem/25 同时交换一行或一列对答案显然没有影响,于是将行列均从大到小排序,每次处理限制相同的一段行列(呈一个L形). 问题变 ...

  9. CSP-S全国模拟赛第四场 【nan?】

    本来想抢三题的 rk1 ?[无耻 最后发现 T2 好像还是慢了些,只搞了个 rk2 子段与子段 第一题随便分析一下,发现一段区间中某个元素的贡献次数就是 \((x+1)·(y+1)\) x 是他左边的 ...

随机推荐

  1. element-ui 设置input的只读或禁用

    只读:readonly 在data里定义:readonly: true, 然后在input框里加上readonly就可以了. 禁用:disabled 在data里定义:edit: true, 然后在i ...

  2. Codeforces Round #540 Tanya and Candies 预处理

    http://codeforces.com/contest/1118/problem/B 题目大意,给你一个序列,删去一个数值之后,要求剩下序列奇数和偶数的和相同,问有多少种删法. 思路:预处理奇数和 ...

  3. Struts2_day02

    一.内容大纲 1 结果页面配置 (1)全局结果页面 (2)局部结果页面 - 配置全局也配置局部,最终局部为准 (3)result标签type属性 - 默认值 dispatcher做转发 - redir ...

  4. ASP.NET MVC学习笔记-----Filter(2)

    接上篇ASP.NET MVC学习笔记-----Filter(1) Action Filter Action Filter可以基于任何目的使用,它需要实现IActionFilter接口: public ...

  5. [转]Android ANR 分析解决方法

    一:什么是ANR ANR:Application Not Responding,即应用无响应 二:ANR的类型 ANR一般有三种类型: 1. KeyDispatchTimeout(5 seconds) ...

  6. lemon spj无效编译器解决方法

    反正我是被坑了很久,心里增的敲难过呀! 我曾经无数次的想把它解决掉: 啊啊啊啊啊啊! 什么嘛!什么嘛! 这个空白的框框里到底要填什么嘛!!! 你已经是一个成熟的lemon了,就不能自动识别给个选项吗! ...

  7. (P2022 有趣的数)||(zoj Little Sub and Mr.Potato's Math Problem)(思维)

    题目链接:https://www.luogu.org/problemnew/show/P2022 题目大意:中文题目 具体思路: 第一步:我们可以先计算出当前的数前面按照字典序的话,前面有多少数(包括 ...

  8. 查看IP以及连接数

    AWK: time awk 'BEGIN{while("netstat -an"|getline){if( $5 ~ /[1-255]/){split($5,t1,":& ...

  9. rpmbuild 构建rpm包时报错解决 error: Installed (but unpackaged) file(s) found:

    解决的办法是找到 /usr/lib/rpm/macros 中%__check_files         /usr/lib/rpm/check-files %{buildroot}   注释掉

  10. elasticsearch安装marvel插件

    Marvel插件要在Elasticsearch和Kibana中同时安装.Step 1: Install Marvel into Elasticsearch: bin/plugin install li ...