NumPy 副本和视图
NumPy 副本和视图
副本是一个数据的完整的拷贝,如果我们对副本进行修改,它不会影响到原始数据,物理内存不在同一位置。
视图是数据的一个别称或引用,通过该别称或引用亦便可访问、操作原有数据,但原有数据不会产生拷贝。如果我们对视图进行修改,它会影响到原始数据,物理内存在同一位置。
视图一般发生在:
- 1、numpy 的切片操作返回原数据的视图。
- 2、调用 ndarray 的 view() 函数产生一个视图。
副本一般发生在:
- Python 序列的切片操作,调用deepCopy()函数。
- 调用 ndarray 的 copy() 函数产生一个副本。
无复制
简单的赋值不会创建数组对象的副本。 相反,它使用原始数组的相同id()来访问它。 id()返回 Python 对象的通用标识符,类似于 C 中的指针。
此外,一个数组的任何变化都反映在另一个数组上。 例如,一个数组的形状改变也会改变另一个数组的形状。
实例
输出结果为:
我们的数组是:
[0 1 2 3 4 5]
调用 id() 函数:
4349302224
a 赋值给 b:
[0 1 2 3 4 5]
b 拥有相同 id():
4349302224
修改 b 的形状:
[[0 1]
[2 3]
[4 5]]
a 的形状也修改了:
[[0 1]
[2 3]
[4 5]]
视图或浅拷贝
ndarray.view() 方会创建一个新的数组对象,该方法创建的新数组的维数更改不会更改原始数据的维数。
实例
输出结果为:
数组 a:
[[0 1]
[2 3]
[4 5]]
创建 a 的视图:
[[0 1]
[2 3]
[4 5]]
两个数组的 id() 不同:
a 的 id():
4314786992
b 的 id():
4315171296
b 的形状:
[[0 1 2]
[3 4 5]]
a 的形状:
[[0 1]
[2 3]
[4 5]]
使用切片创建视图修改数据会影响到原始数组:
实例
输出结果为:
我们的数组:
[ 0 1 2 3 4 5 6 7 8 9 10 11]
创建切片:
[ 0 1 2 3 123 234 6 7 8 9 10 11]
4545878416 4545878496 4545878576
变量 a,b 都是 arr 的一部分视图,对视图的修改会直接反映到原数据中。但是我们观察 a,b 的 id,他们是不同的,也就是说,视图虽然指向原数据,但是他们和赋值引用还是有区别的。
副本或深拷贝
ndarray.copy() 函数创建一个副本。 对副本数据进行修改,不会影响到原始数据,它们物理内存不在同一位置。
实例
输出结果为:
数组 a:
[[10 10]
[ 2 3]
[ 4 5]]
创建 a 的深层副本:
数组 b:
[[10 10]
[ 2 3]
[ 4 5]]
我们能够写入 b 来写入 a 吗?
False
修改 b 的内容:
修改后的数组 b:
[[100 10]
[ 2 3]
[ 4 5]]
a 保持不变:
[[10 10]
[ 2 3]
[ 4 5]]
NumPy 副本和视图的更多相关文章
- NumPy副本和视图
NumPy - 副本和视图 在执行函数时,其中一些返回输入数组的副本,而另一些返回视图. 当内容物理存储在另一个位置时,称为副本. 另一方面,如果提供了相同内存内容的不同视图,我们将其称为视图. 无复 ...
- 17、NumPy——副本和视图
副本是一个数据的完整的拷贝,如果我们对副本进行修改,它不会影响到原始数据,物理内存不在同一位置. 视图是数据的一个别称或引用,通过该别称或引用亦便可访问.操作原有数据,但原有数据不会产生拷贝.如果我们 ...
- 吴裕雄--天生自然Numpy库学习笔记:NumPy 副本和视图
副本是一个数据的完整的拷贝,如果我们对副本进行修改,它不会影响到原始数据,物理内存不在同一位置. 视图是数据的一个别称或引用,通过该别称或引用亦便可访问.操作原有数据,但原有数据不会产生拷贝.如果我们 ...
- Numpy常用概念-对象的副本和视图、向量化、广播机制
一.引言 在我们操作数组的时候,返回的是新数组还是原数组的链接,我们就需要了解对象副本和视图的区别. 向量化和广播是numpy内部实现的基础. 二.对象副本和视图 我们应该注意到,在操作数组的时候返回 ...
- 数据分析 大数据之路 四 numpy 2
NumPy 数学函数 NumPy 提供了标准的三角函数:sin().cos().tan(import numpy as np a = np.array([0,30,45,60,90])print (' ...
- numpy学习笔记(三)
(1)numpy的位操作 序号 操作及描述 1. bitwise_and 对数组元素执行位与操作 2. bitwise_or 对数组元素执行位或操作 3. ...
- NumPy教程目录
NumPy Ndarray对象 NumPy数组属性 NumPy数据类型 NumPy数组创建例程 NumPy来自现有数据的数组 NumPy来自数值范围的数组 NumPy切片和索引 NumPy - 高级索 ...
- Python之Numpy详细教程
NumPy - 简介 NumPy 是一个 Python 包. 它代表 “Numeric Python”. 它是一个由多维数组对象和用于处理数组的例程集合组成的库. Numeric,即 NumPy 的前 ...
- 理解numpy中ndarray的内存布局和设计哲学
目录 ndarray是什么 ndarray的设计哲学 ndarray的内存布局 为什么可以这样设计 小结 参考 博客:博客园 | CSDN | blog 本文的主要目的在于理解numpy.ndarra ...
随机推荐
- flex学习笔记 显示数字步进
<?xml version="1.0" encoding="utf-8"?> <s:Application xmlns:fx="ht ...
- vue-i18n
安装 npm install vue-i18n 初始化 import VueI18n from 'vue-i18n' Vue.use(VueI18n) const messages = { zh: { ...
- Swoole 结合TP5创建http服务
下载TP5框架,在项目根目录下创建server目录 http_service.php <?php //创建服务 $http = new swoole_http_server("0.0. ...
- 1.ossutil初步使用
ossutil对应的阿里云参考文档链接地址: https://help.aliyun.com/document_detail/50452.html?spm=a2c4g.11186623.6.1355. ...
- ASP.NET HTTP 协议
http是无状态的,不会记得“上个请求***”,所以哪怕是同一个页面中的js.css.jpg也都要重复的提交Accept-Language.Accept-Encoding.Cookie等. 一般情况下 ...
- 8.抽象类、接口和多态.md
目录 1.抽象类 1.抽象类 2.接口和抽象类的关系 2.1实现上的区别: 22.类和接口的关系: 2.3.Java为什么只能单继承可以多实现: 2.4.接口和接口的关系: 3.多态 2.接口和抽象类 ...
- python 基础回顾 一
Python 基础回顾 可变类型:list ,dict 不可变类型:string,tuple,numbers tuple是不可变的,但是它包含的list dict是可变的. set 集合内部是唯一的 ...
- serclet监听器
1:监听servlet上下文 2:监听会话 3:监听请求 使用,必须是实现对应的接口,然后在web.xml中配置自己写的监听器的实现类 过滤器之后,servlet之前(有待深入研究) 下一集预告:过滤 ...
- 远程批量查看windosws操作系统3389端口的开放情况
本文只提供思想.具体可以根椐情况拓展. 前提是需要配置远程主机的SNMP协议.主要是共同体哟. 脚本使用: 1.拷贝check_tcp到脚本执行的主机中或在此主机中安装nagios; 2.保持list ...
- Android开发最佳实践《IT蓝豹》
Android开发最佳实践 移动开发Android经验分享应用GoogleMaterial Design 摘要:前 段时间,Google公布了Android开发最佳实践的一系列课程,涉及到一些平时 ...