图像基本知识:

通常情况下,我们可以将一副Matplotlib图像分成三层结构:

1.第一层是底层的容器层,主要包括Canvas、Figure、Axes;

2.第二层是辅助显示层,主要包括Axis、Spines、Tick、Grid、Legend、Title等,该层可通过set_axis_off()或set_frame_on(False)等方法设置不显示;

3.第三层为图像层,即通过plot、contour、scatter等方法绘制的图像。

容器层:容器层主要由Canvas、Figure、Axes组成

  Canvas是位于最底层的系统层,绘图过程中充当画板的角色,即放置画布的工具。通常情况下,我们并不需要对Canvas特别的声明,但是当我需要在其他模块如PyQt中调用Matplotlib模块绘图时,就需要首先声明Canvas,这就相当于我们在自家画室画画不用强调要用画板,出去写生时要特意带一块画板。

  Figure(fig)是Canvas上方的第一层,也是需要用户来操作的应用层的第一层,在绘图的过程中充当画布的角色。当我们对Figure大小、背景色彩等进行设置的时候,就相当于是选择画布大小、材质的过程。因此,每当我们绘图的时候,写的第一行就是创建Figure的代码。

  Axes(ax,坐标系)是应用层的第二层,在绘图的过程中相当于画布上绘图区的角色。一个Figure对象可以包含多个Axes对象,每个Axes都是一个独立的坐标系,绘图过程中的所有图像都是基于坐标系绘制的。

辅助显示层:

  辅助显示层为Axes内的除了根据数据绘制出的图像以外的内容,主要包括Axes外观(facecolor)、边框线(spines)、坐标轴(axis)、坐标轴名称(axis label)、坐标轴刻度(tick)、坐标轴刻度标签(tick label)、网格线(grid)、图例(legend)、标题(title)等内容。该层的设置可使图像显示更加直观更加容易被用户理解,但又并不会对图像产生实质的影响。

图像层:

  图像层指Axes内通过plot、scatter、hist、contour、bar、barbs等函数根据数据绘制出的图像。

保存图表plt.savefig()

  调用plt.savefig()将当前的Figure对象保存成图像文件,图像格式由图像文件的扩展名决定。下面程序将当前的图表保存为“test.png”,并且通过dpi指定图像的分辨率为120,因此输出图像的宽度为“8X120 = 960”个像素。使用这种方法可以很容易编写出批量输出图表的程序。plt.savefig("test.png",dpi=120)

plt.imshow()

imshow()函数格式为:matplotlib.pyplot.imshow(X, cmap=None)

X: 要绘制的图像或数组

cmap: 颜色图谱(colormap), 默认绘制为RGB(A)颜色空间。其它可选的颜色图谱如下列表:

颜色图谱

描述

autumn

红-橙-黄

bone

黑-白,x线

cool

青-洋红

copper

黑-铜

flag

红-白-蓝-黑

gray

黑-白

hot

黑-红-黄-白

hsv

hsv颜色空间, 红-黄-绿-青-蓝-洋红-红

inferno

黑-红-黄

jet

蓝-青-黄-红

magma

黑-红-白

pink

黑-粉-白

plasma

绿-红-黄

prism

红-黄-绿-蓝-紫-...-绿模式

spring

洋红-黄

summer

绿-黄

viridis

蓝-绿-黄

winter

蓝-绿

Plt.figure()

matplotlib.pyplot.figure(num=None, figsize=None, dpi=None, facecolor=None, edgecolor=None)

所有参数都是可选的,都有默认值,因此调用该函数时可以不带任何参数,其中:

num: 整型或字符型都可以。设置为整型,则该整型数字表示窗口序号。设置为字符型,则该字符串表示窗口名称。用该参数来命名窗口,两个窗口序号或名相同,则后一个窗口会覆盖前一个窗口。

figsize: 设置窗口大小。是一个tuple型的整数,如figsize=(8,8)。

dpi: 整形数字,表示窗口的分辨率。

facecolor: 窗口的背景颜色。edgecolor: 窗口的边框颜色。

用figure()函数创建的窗口,只能显示一幅图片,显示多幅图片,则需要将这个窗口再划分为几个子图,在每个子图中显示不同的图片。

可以使用subplot()函数来划分子图,函数格式为:

matplotlib.pyplot.subplot(nrows, ncols, plot_number)

nrows: 子图的行数。

ncols:  子图的列数。

plot_number: 当前子图的编号。

ax.get_xlim()

获得Axes的x坐标范围,默认是 (0.0, 1.0)

ax.get_yscale()

获得y轴的数据刻画类型

ax.set_xscale('log')

将x轴设置为log

plt.tight_layout()

如果有多个子图,我们可以使用tight_layout()函数来调整显示的布局,该函数格式为:

matplotlib.pyplot.tight_layout(pad=1.08, h_pad=None, w_pad=None, rect=None)

所有的参数都是可选的,调用该函数时可省略所有的参数:

pad: 主窗口边缘和子图边缘间的间距,默认为1.08

h_pad, w_pad: 子图边缘之间的间距,默认为 pad_inches

rect: 一个矩形区域,如果设置这个值,则将所有的子图调整到这个矩形区域内。

一般调用为:plt.tight_layout()  #自动调整subplot间的参数

matplotlib基础知识全面解析的更多相关文章

  1. Matplotlib基础知识

    Matplotlib基础知识 Matplotlib中的基本图表包括的元素 x轴和y轴 axis水平和垂直的轴线 x轴和y轴刻度 tick刻度标示坐标轴的分隔,包括最小刻度和最大刻度 x轴和y轴刻度标签 ...

  2. [系统安全] 十六.PE文件逆向基础知识(PE解析、PE编辑工具和PE修改)

    [系统安全] 十六.PE文件逆向基础知识(PE解析.PE编辑工具和PE修改) 文章来源:https://masterxsec.github.io/2017/05/02/PE%E6%96%87%E4%B ...

  3. matplotlib -- 基础知识

    matplotlib 组织图表的方式 最上层是一个 Figure 实例,包含了所有可见的和其他一些不可见的内容.该 Figure 实例包含了一个 Axes 实例的成员属性 Figure.axes,同时 ...

  4. Matplotlib基础使用

    matplotlib 一.Matplotlib基础知识 Matplotlib中的基本图表包括的元素 x轴和y轴 axis 水平和垂直的轴线 x轴和y轴刻度 tick 刻度标示坐标轴的分隔,包括最小刻度 ...

  5. python爬虫主要就是五个模块:爬虫启动入口模块,URL管理器存放已经爬虫的URL和待爬虫URL列表,html下载器,html解析器,html输出器 同时可以掌握到urllib2的使用、bs4(BeautifulSoup)页面解析器、re正则表达式、urlparse、python基础知识回顾(set集合操作)等相关内容。

    本次python爬虫百步百科,里面详细分析了爬虫的步骤,对每一步代码都有详细的注释说明,可通过本案例掌握python爬虫的特点: 1.爬虫调度入口(crawler_main.py) # coding: ...

  6. Java 面试知识点解析(一)——基础知识篇

    前言: 在遨游了一番 Java Web 的世界之后,发现了自己的一些缺失,所以就着一篇深度好文:知名互联网公司校招 Java 开发岗面试知识点解析 ,来好好的对 Java 知识点进行复习和学习一番,大 ...

  7. 曹工说Redis源码(2)-- redis server 启动过程解析及简单c语言基础知识补充

    文章导航 Redis源码系列的初衷,是帮助我们更好地理解Redis,更懂Redis,而怎么才能懂,光看是不够的,建议跟着下面的这一篇,把环境搭建起来,后续可以自己阅读源码,或者跟着我这边一起阅读.由于 ...

  8. [源码解析] 深度学习分布式训练框架 Horovod (1) --- 基础知识

    [源码解析] 深度学习分布式训练框架 Horovod --- (1) 基础知识 目录 [源码解析] 深度学习分布式训练框架 Horovod --- (1) 基础知识 0x00 摘要 0x01 分布式并 ...

  9. [源码解析] PyTorch 流水线并行实现 (1)--基础知识

    [源码解析] PyTorch 流水线并行实现 (1)--基础知识 目录 [源码解析] PyTorch 流水线并行实现 (1)--基础知识 0x00 摘要 0x01 历史 1.1 GPipe 1.2 t ...

随机推荐

  1. skipper prometheus 监控

    skipper 是支持prometheus监控的,只是没有启用,需要添加参数 -enable-prometheus-metrics 测试使用的是一个简单nginx web ,同时使用docker-co ...

  2. 05基于python玩转人工智能最火框架之TensorFlow基础知识

    从helloworld开始 mkdir mooc # 新建一个mooc文件夹 cd mooc mkdir 1.helloworld # 新建一个helloworld文件夹 cd 1.helloworl ...

  3. vsphere和vmware快照的不足之处

    当快照创建时虚拟机执行一个读操作,hypervisor会检查快照VMDK,查看是否有被读取的区块存在.如果有,则从快照中为虚拟机提供这个区块,如果没有,虚拟机还需要去读取基础VMDK.如果只有一个快照 ...

  4. Spring中时间格式注解@DateTimeFormat

    在SpringMVC中Controller中方法参数为Date类型想要限定请求传入时间格式时,可以通过@DateTimeFormat来指定,但请求传入参数与指定格式不符时,会返回400错误. 如果在B ...

  5. 论 业务系统 架构 的 简化 (一) 不需要 MQ

    MQ , 就是 消息队列(Message Queue), 不知从什么时候起, MQ 被用来 搭建 分布式 业务系统 架构, 一个重要作用 就是用来  “削峰”   . 我们 这里 就来 讨论 如何 设 ...

  6. 【转】OPPO A77保持应用后台运行方法

    原文网址:http://www.3533.com/news/16/201708/163086/1.htm OPPO A77保持应用后台运行方法.手机的运行内存大小有限,因此在出现运行应用过多时,系统就 ...

  7. spring-IOC容器(三)

    一.通过工厂方法配置Bean: .xml <!-- class属性:指向静态工厂方法的全类名 factory-method:指向静态工厂方法的名字 constructor-arg:如果工厂方法需 ...

  8. 【转】利用Psyco提升Python运行速度

    转自:http://www.leeon.me/a/use-Psyco-to-improve-Python-speed Psyco 是严格地在 Python 运行时进行操作的.也就是说,Python 源 ...

  9. 使用spark streaming报错ERROR DFSClient: Failed to close inode xxxx

    转载自:http://blog.csdn.net/xiaolixiaoyi/article/details/45875101 好几个Spark streaming的程序同时运行,发现spark报出了如 ...

  10. windows 下 Anaconda 安装 TensorFlow

    转自: https://www.cnblogs.com/nosqlcoco/p/6923861.html 什么是 Anaconda? Anaconda is the leading open data ...