Javascript如何实现GPU加速?
一、什么是Javascript实现GPU加速?
CPU与GPU设计目标不同,导致它们之间内部结构差异很大。
CPU需要应对通用场景,内部结构非常复杂。
而GPU往往面向数据类型统一,且相互无依赖的计算。
所以,我们在Web上实现3D场景时,通常使用WebGL利用GPU运算(大量顶点)。
但是,如果只是通用的计算场景呢?比如处理图片中大量像素信息,我们有办法使用GPU资源吗?这正是本文要讲的,GPU通用计算,简称GPGPU。
二、实例演示:色块识别。
如下图所示,我们识别图片中彩虹糖色块,给糖果添加表情。

2.1、实例地址(打开页面后,依次点击按钮“使用CPU计算”、“使用GPU计算”):
http://tgideas.qq.com/2018/brucewan/gpgpu.html

2.2、运行代码:
var rgb2hsv = function(r, g, b) {
var max = Math.max(r, g, b), min = Math.min(r, g, b),
d = max - min,
h,
s = (max === 0 ? 0 : d / max),
v = max / 255;
switch (max) {
case min: h = 0; break;
case r: h = (g - b) + d * (g < b ? 6: 0); h /= 6 * d; break;
case g: h = (b - r) + d * 2; h /= 6 * d; break;
case b: h = (r - g) + d * 4; h /= 6 * d; break;
}
return {
h: self.hueIndexs[parseInt(h*360)],
s: s,
v: v
}
};
运行次数:262144次
2.3、测试结论:
实例中,我们分别使用GPU和CPU进行色相转换(防止光线影响识别准确度),其余步骤均一致。
| 测试平台 | 测试结论 |
| PC | GPU较CPU优势较少 |
| iOS | GPU较CPU优势较少 |
| Android | vivoX20(运行10次平均) CPU:770ms,GPU:270 GPU较CPU快2.85倍 三星S7(运行10次平均) CPU:982ms,GPU:174ms GPU较CPU快5.64倍 |
2.4、使用GPGPU意义:
GPU与CPU数据传输过程,与GPU实际运算耗时相当,所以使用GPU运算传输成本过高,实测在Android中具有较大优势。
本测试案例是从webAR项目中抽取,需要实时跟踪用户摄像头处理视频流(256*256),使用GPU计算意义非常大,否则无法实现实时跟踪。
三、如何实现GPU通用计算?
3.1、首先,我们通过一张流程图,演示原理:
3.2、实现:
3.2.1、创建顶点着色器,只是传递了贴图坐标。
attribute vec4 position;
varying vec2 vCoord;
void main() {
vCoord = position.xy * 0.5 + 0.5;
gl_Position = position;
}
3.2.2、创建片元着色器,根据贴图坐标贴图。
precision highp float;
varying vec2 vCoord;
uniform sampler2D map;
void main(void) {
vec4 color = texture2D(map, vCoord);
gl_FragColor = color;
}
3.3.3、根据如上着色器代码,创建程序对象,变量code是我们要传入的用于计算的代码。
// 绑定并编译着色器程序
var vertexShaderSource = '...';
var fragmentShaderSource = '...' + code + '...';
var vertexShader = gl.createShader(gl.VERTEX_SHADER);
gl.shaderSource(vertexShader, vertexShaderSource);
gl.compileShader(vertexShader);
var fragmentShader = gl.createShader(gl.FRAGMENT_SHADER);
gl.shaderSource(fragmentShader, fragmentShaderSource);
gl.compileShader(fragmentShader); // 创建程序对象
var program = gl.createProgram();
gl.attachShader(program, vertexShader);
gl.attachShader(program, fragmentShader);
gl.linkProgram(program);
gl.useProgram(program);
3.3.4、传入顶点数据,创建一个面覆盖整个画布。
// 顶点数据传输
var vertices = new Float32Array([-1.0, 1.0, -1.0, -1.0, 1.0, -1.0, 1.0, 1.0]);
var vertexBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, vertexBuffer);
gl.bufferData(gl.ARRAY_BUFFER, vertices, gl.STATIC_DRAW);
var aPosition = gl.getAttribLocation(program, 'position');
gl.vertexAttribPointer(aPosition, 2, gl.FLOAT, false, 0, 0);
gl.enableVertexAttribArray(aPosition);
3.3.5、传入原始数据,本例中传入我要处理的图像数据,作为贴图,最终绘制到屏幕。
var gl = this.gl;
var program = this.program;
var texture = gl.createTexture();
var uMap = gl.getUniformLocation(program, 'map'); gl.activeTexture(gl.TEXTURE0);
gl.bindTexture(gl.TEXTURE_2D, texture); gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA, gl.UNSIGNED_BYTE, canvas);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE);
gl.generateMipmap(gl.TEXTURE_2D); gl.uniform1i(uMap, 0); // 绘制
gl.clearColor(0, 0, 0, 1);
gl.clear(gl.COLOR_BUFFER_BIT);
gl.drawArrays(gl.TRIANGLE_FAN, 0, 4);
3.3.6、从最终绘制的画面上,获取颜色信息作为最终处理结果数据。
var pixels = new Uint8Array(gl.drawingBufferWidth * gl.drawingBufferHeight * 4);
gl.readPixels(0, 0, gl.drawingBufferWidth, gl.drawingBufferHeight, gl.RGBA, gl.UNSIGNED_BYTE, pixels);
3.3.7、完整代码:
http://tgideas.qq.com/2018/brucewan/gpu.js
其实清楚原理后,整体实现比较简单。
但是对于不了解WebGL的同学来说,理解上有一定难度,我后续准备写一个系列的WebGL教程,有兴趣的同学可以关注。
四、有无现成类库?
大家可以看到,我实现的gpu.js中,并没有将javascript转换成着色器语言(类C),而是用户直接传入着色器代码。但是github上已有将javascript转换为着色器语言的库。
https://github.com/gpujs/gpu.js
为什么我没有直接使用呢?
1、简单的使用,2k可以实现的代码,不想引入200k的库;
2、数据输入输出可以由自己灵活控制;
3、着色器语言很简单,特别只是使用基础运算逻辑的代码,没必要由库从Javascript转换。
没有WebGL基础的同学,建议直接使用https://github.com/gpujs/gpu.js,从本文理解整体逻辑;
有一定基础的同学,建议由http://tgideas.qq.com/2018/brucewan/gpu.js自己定制,更为灵活。
另外,这个组件我没打算深度封装,也没打算维护……嗯,就这样。
Javascript如何实现GPU加速?的更多相关文章
- 开启gpu加速的高性能移动端相框组件!
通过设置新的css3新属性translateX来代替传统的绝对定位改变left值的动画原理,新属性translateX会开启浏览器自带的gpu硬件加速动画性能,提高流畅度从而提高用户体验, 代码有很详 ...
- CSS动画的性能分析和浏览器GPU加速
此文已由作者袁申授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. 有数的数据大屏可以在一块屏幕上展示若干张不同的图表,以炫酷的方式展示各种业务数据.其中有些图表使用CSS实现了 ...
- Theano在windows下的安装及GPU加速
安装环境:wondows 64bit Teano安装测试 1. Anaconda 安装 Anaconda是一个科学计算环境,自带的包管理器conda很强大.之所以选择它是因为它内置了python,以及 ...
- GPU 加速NLP任务(Theano+CUDA)
之前学习了CNN的相关知识,提到Yoon Kim(2014)的论文,利用CNN进行文本分类,虽然该CNN网络结构简单效果可观,但论文没有给出具体训练时间,这便值得进一步探讨. Yoon Kim代码:h ...
- ubuntu 15 安装cuda,开启GPU加速
1 首先要开启GPU加速就要安装cuda.安装cuda,首先要安装英伟达的驱动.ubuntu有自带的开源驱动,首先要禁用nouveau.这儿要注意,虚拟机不能安装ubuntu驱动.VMWare下显卡只 ...
- Silverlight - GPU加速
1. 在Silverlight plug-in上设置 <param name="enableGPUAcceleration" value="true" / ...
- 用cudamat做矩阵运算的GPU加速
1. cudamat简介 cudamat是一个python语言下,利用NVIDIA的cuda sdk 进行矩阵运算加速的库.对于不熟悉cuda编程的程序员来说,这是一个非常方便的GPU加速方案.很多工 ...
- 深度学习“引擎”之争:GPU加速还是专属神经网络芯片?
深度学习“引擎”之争:GPU加速还是专属神经网络芯片? 深度学习(Deep Learning)在这两年风靡全球,大数据和高性能计算平台的推动作用功不可没,可谓深度学习的“燃料”和“引擎”,GPU则是引 ...
- GPU加速有坑?
大多数人都知道有动画的地方可以使用GPU来加速页面渲染. 例如,做优化的时候,将使用left和top属性的动画修改成使用transform属性的CSS动画.或者听到别人教你使用transform:tr ...
随机推荐
- windows系统相关命令及问题排查实践
1. 如何查看哪个端口被哪个程序占用? Netstat –ano|findstr "80" ->找到监听80端口的pid tasklist|findstr “<PID号 ...
- Oracle EBS GL 总账日记账打开报错此职责无可用函数
系统管理员下,跑请求:
- asp.net获取当前网址url
asp.net获取当前网址url 设当前页完整地址是:http://www.jb51.net/aaa/bbb.aspx?id=5&name=kelli "http://" ...
- 【MySQL 5.7 Reference Manual】15.4.2 Change Buffer(变更缓冲)
15.4.2 Change Buffer(变更缓冲) The change buffer is a special data structure that caches changes to se ...
- NGUI和UGUI图片字 艺术字(Bitmap图片转文字)制作方法
用图片字而不是图片 美术和程序的配合,需要程序能够很快抓住问题重点并提出解决方案.美术出的图片字比我们使用的字体更好好看,那么是否要一个个图片去拼成数字呢? NGUI创建图片字 准备材料 美术提供的数 ...
- 设置泛域名和设置IIS下面不同网站通过不同域名公用80端口的操作指引
原文链接: http://www.lookdaima.com/WebForms/WebPages/Blanks/Pm/Docs/DocItemDetail.aspx?id=4be204ca-249b- ...
- ES6中变量解构的用途—遍历Map结构
- 十分钟教你使用NoteExpress
http://www.a-site.cn/article/761794.html 如果你正走在读研的路上,不管是什么专业,日常生活中都少不了读文献.读文献和读文献. 与其等到文献堆积如山,给阅读和使用 ...
- java过滤器filter使用
一:filter:过滤器,拦截servlet的请求和响应. 1. package jd.com.filter; import javax.servlet.*; import java.io.IOExc ...
- GitHub上最火的74个Android开源项目(三)
此前,推出的GitHub平台上“最受欢迎的开源项目”系列文章引发了许多读者的热议,在“GitHub上最火的40个Android开源项目(一).(二)中,我们也相继盘点了40个GitHub上最受欢迎的A ...