python 回溯法 子集树模板 系列 —— 19、野人与传教士问题
问题
在河的左岸有N个传教士、N个野人和一条船,传教士们想用这条船把所有人都运过河去,但有以下条件限制:
(1)修道士和野人都会划船,但船每次最多只能运M个人;
(2)在任何岸边以及船上,野人数目都不能超过修道士,否则修道士会被野人吃掉。
假定野人会服从任何一种过河安排,请规划出一个确保修道士安全过河的计划。
分析
百度一下,网上全是用左岸的传教士和野人人数以及船的位置这样一个三元组作为状态,进行考虑,千篇一律。
我换了一种考虑,只考虑船的状态。
船的状态:(x, y) x表示船上x个传教士,y表示船上y个野人,其中 |x|∈[0, m], |y|∈[0, m], 0<|x|+|y|<=m, x*y>=0, |x|>=|y|
船从左到右时,x,y取非负数。船从右到左时,x,y取非正数
解的编码:[(x0,y0), (x1,y1), ..., (xp,yp)] 其中x0+x1+...+xp=N, y0+y1+...+yp=N
解的长度不固定,但一定为奇数
开始时左岸(N, N), 右岸(0, 0)。最终时左岸(0, 0), 右岸(N, N)
由于船的合法状态是动态的、二维的。因此,使用一个函数get_states()来专门生成其状态空间,使得主程序更加清晰。
代码
n = 3 # n个传教士、n个野人
m = 2 # 船能载m人
x = [] # 一个解,就是船的一系列状态
X = [] # 一组解
is_found = False # 全局终止标志
# 计算船的合法状态空间(二维)
def get_states(k): # 船准备跑第k趟
global n, m, x
if k%2==0: # 从左到右,只考虑原左岸人数
s1, s2 = n - sum(s[0] for s in x), n - sum(s[1] for s in x)
else: # 从右到左,只考虑原右岸人数(将船的历史状态累加可得!!!)
s1, s2 = sum(s[0] for s in x), sum(s[1] for s in x)
for i in range(s1 + 1):
for j in range(s2 + 1):
if 0 < i+j <= m and (i*j == 0 or i >= j):
yield [(-i,-j), (i,j)][k%2==0] # 生成船的合法状态
# 冲突检测
def conflict(k): # 船开始跑第k趟
global n, m, x
# 若船上载的人与上一趟一样(会陷入死循环!!!!)
if k > 0 and x[-1][0] == -x[-2][0] and x[-1][1] == -x[-2][1]:
return True
# 任何时候,船上传教士人数少于野人,或者无人,或者超载(计算船的合法状态空间时已经考虑到了。)
#if 0 < abs(x[-1][0]) < abs(x[-1][1]) or x[-1] == (0, 0) or abs(sum(x[-1])) > m:
# return True
# 任何时候,左岸传教士人数少于野人
if 0 < n - sum(s[0] for s in x) < n - sum(s[1] for s in x):
return True
# 任何时候,右岸传教士人数少于野人
if 0 < sum(s[0] for s in x) < sum(s[1] for s in x):
return True
return False # 无冲突
# 回溯法
def backtrack(k): # 船准备跑第k趟
global n, m, x, is_found
if is_found: return # 终止所有递归
if n - sum(s[0] for s in x) == 0 and n - sum(s[1] for s in x) == 0: # 左岸人数全为0
print(x)
is_found = True
else:
for state in get_states(k): # 遍历船的合法状态空间
x.append(state)
if not conflict(k):
backtrack(k+1) # 深度优先
x.pop() # 回溯
# 测试
backtrack(0)
效果图

解的解释,从上往下看:

一个结论
貌似只有满足m = n-1,此问题才有解。
python 回溯法 子集树模板 系列 —— 19、野人与传教士问题的更多相关文章
- python 回溯法 子集树模板 系列 —— 18、马踏棋盘
问题 将马放到国际象棋的8*8棋盘board上的某个方格中,马按走棋规则进行移动,走遍棋盘上的64个方格,要求每个方格进入且只进入一次,找出一种可行的方案. 分析 说明:这个图是5*5的棋盘. 图片来 ...
- python 回溯法 子集树模板 系列 —— 17、找零问题
问题 有面额10元.5元.2元.1元的硬币,数量分别为3个.5个.7个.12个.现在需要给顾客找零16元,要求硬币的个数最少,应该如何找零?或者指出该问题无解. 分析 元素--状态空间分析大法:四种面 ...
- python 回溯法 子集树模板 系列 —— 16、爬楼梯
问题 某楼梯有n层台阶,每步只能走1级台阶,或2级台阶.从下向上爬楼梯,有多少种爬法? 分析 这个问题之前用分治法解决过.但是,这里我要用回溯法子集树模板解决它. 祭出元素-状态空间分析大法:每一步是 ...
- python 回溯法 子集树模板 系列 —— 15、总结
作者:hhh5460 时间:2017年6月3日 用回溯法子集树模板解决了这么多问题,这里总结一下使用回溯法子集树模板的步骤: 1.确定元素及其状态空间(精髓) 对每一个元素,遍历它的状态空间,其它的事 ...
- python 回溯法 子集树模板 系列 —— 14、最长公共子序列(LCS)
问题 输入 第1行:字符串A 第2行:字符串B (A,B的长度 <= 1000) 输出 输出最长的子序列,如果有多个,随意输出1个. 输入示例 belong cnblogs 输出示例 blog ...
- python 回溯法 子集树模板 系列 —— 10、m着色问题
问题 图的m-着色判定问题 给定无向连通图G和m种不同的颜色.用这些颜色为图G的各顶点着色,每个顶点着一种颜色,是否有一种着色法使G中任意相邻的2个顶点着不同颜色? 图的m-着色优化问题 若一个图最少 ...
- python 回溯法 子集树模板 系列 —— 9、旅行商问题(TSP)
问题 旅行商问题(Traveling Salesman Problem,TSP)是旅行商要到若干个城市旅行,各城市之间的费用是已知的,为了节省费用,旅行商决定从所在城市出发,到每个城市旅行一次后返回初 ...
- python 回溯法 子集树模板 系列 —— 8、图的遍历
问题 一个图: A --> B A --> C B --> C B --> D B --> E C --> A C --> D D --> C E -- ...
- python 回溯法 子集树模板 系列 —— 3、0-1背包问题
问题 给定N个物品和一个背包.物品i的重量是Wi,其价值位Vi ,背包的容量为C.问应该如何选择装入背包的物品,使得放入背包的物品的总价值为最大? 分析 显然,放入背包的物品,是N个物品的所有子集的其 ...
随机推荐
- Android逆向 APK文件组成
一 了解APK文件 我们知道Android系统能运行的程序是.apk文件格式,其实它就是一个压缩包而已,把.apk修改成.zip,然后解压就可以得到该apk内部的文件结构. PS: 既然可以把apk文 ...
- [Android] 仿照 Last App Switcher 写的小程序
在Android众多工具类app中,Last App Switcher绝对算是一个让人用过就不会卸载的工具.LAS这个应用,它的功能很简单,就是通过一个浮动按钮实现在两个应用之间一键切换,但是非常 ...
- Python+Selenium笔记(八):操作下拉菜单
(一) Select类 Select类是selenium的一个特定的类,用来与下拉菜单和列表交互. 下拉菜单和列表是通过HTML的<select> 元素实现的.选择项是通过<sele ...
- 【转】qt-vs-addin:Qt4和Qt5之VS插件如何共存与使用
原则上,两者是不可以同时存在的,但是如果都安装了,该如何分别使用他们呢? Qt4 Visual Studio Add-in:官网可以下载安装程序,qt-vs-addin-1.1.11-opensour ...
- windows7下搭建python环境并用pip安装networkx
1.安装顺序:Python+pip+pywin32+numpy+matplotlib+networkx 2.版本问题 所安装的所有程序和包都需要具有统一的python版本.系统版本和位宽,所以第一步要 ...
- myeclipse配置jboss
一 相关软件准备 jdk1.6 Myeclipse jboss 6.1 下载地址:http://www.jboss.org/jbossas/downloads/二 安装 下载完jboss ...
- 美团SQL优化工具SQLAdvisor
介绍 在数据库运维过程中,优化 SQL 是 DBA 团队的日常任务.例行 SQL 优化,不仅可以提升程序性能,还能够降低线上故障的概率. 目前常用的 SQL 优化方式包括但不限于:业务层优化.SQL逻 ...
- C++类中的特殊成员函数-------复制构造函数
在C++中存在一个特殊函数,他就是复制构造函数,假如我们有类A,如果有A a;A b=a; 在这种情况下利用A类变量a来给同是A类变量的b来赋值,这个时候类会使用复制构造函数,如果我们不显式声明复 ...
- HTML DOM item() 方法
一直不知道javascript还有类似jQ里面eq()的函数,原来原生javascript的item()有类似功能: 由于是原生javascript,先补习下children和childNodes的区 ...
- Test传送门(更新中)
一.Codeforces传送门: Avito Code Challenge 2018 题解传送门 Codeforces Round #485 (Div. 2) 题解传送门 二.hihocode ...