▶ 书中第四章部分程序,加上自己补充的代码,图的深度优先遍历

● 无向图的广度优先遍历,有向 / 无向图代码仅若干方法名不同

 package package01;

 import edu.princeton.cs.algs4.In;
import edu.princeton.cs.algs4.StdOut;
import edu.princeton.cs.algs4.Graph;
import edu.princeton.cs.algs4.Stack;
import edu.princeton.cs.algs4.Queue; public class class01
{
private static final int INFINITY = Integer.MAX_VALUE;
private boolean[] marked; // 顶点是否已被遍历
private int[] edgeTo; // 每个顶点在 s - v 路径中的父顶点
private int[] distTo; // 每个顶点在 s - v 路径中的路径长 public class01(Graph G, int s)
{
marked = new boolean[G.V()];
distTo = new int[G.V()];
edgeTo = new int[G.V()];
for (int v = 0; v < G.V(); v++)
distTo[v] = INFINITY;
nonRecursiveBFS(G, s);
//assert check(G, s);
} private void nonRecursiveBFS(Graph G, int s)
{
Queue<Integer> q = new Queue<Integer>();
distTo[s] = 0;
marked[s] = true;
for (q.enqueue(s); !q.isEmpty();)
{
int v = q.dequeue();
for (int w : G.adj(v))
{
if (!marked[w])
{
edgeTo[w] = v;
distTo[w] = distTo[v] + 1;
marked[w] = true;
q.enqueue(w);
}
}
}
} private void nonRecursiveBFS(Graph G, Iterable<Integer> sources) // 以迭代器元素为起点列表进行遍历
{
Queue<Integer> q = new Queue<Integer>();
for (int s : sources)
{
marked[s] = true;
distTo[s] = 0;
q.enqueue(s);
}
for (;!q.isEmpty();)
{
int v = q.dequeue();
for (int w : G.adj(v))
{
if (!marked[w])
{
edgeTo[w] = v;
distTo[w] = distTo[v] + 1;
marked[w] = true;
q.enqueue(w);
}
}
}
} public boolean marked(int v)
{
return marked[v];
} public int distTo(int v)
{
return distTo[v];
} public Iterable<Integer> pathTo(int v)
{
if (!marked(v))
return null;
Stack<Integer> path = new Stack<Integer>();
int x;
for (x = v; distTo[x] != 0; x = edgeTo[x])
path.push(x);
path.push(x);
return path;
} private boolean check(Graph G, int s)
{
if (distTo[s] != 0)
{
StdOut.println("\n<check> error distance of s.\n");
return false;
}
for (int v = 0; v < G.V(); v++)
{
for (int w : G.adj(v))
{
if (marked(v) != marked(w)) // 检查边正确性
{
StdOut.println("edge " + v + "-" + w);
StdOut.println("marked(" + v + ") = " + marked(v));
StdOut.println("marked(" + w + ") = " + marked(w));
return false;
}
if (marked(v) && (distTo[w] > distTo[v] + 1)) // 检查顶点 v 相连的顶点的距离正确性
{
StdOut.println("edge " + v + "-" + w);
StdOut.println("distTo[" + v + "] = " + distTo[v]);
StdOut.println("distTo[" + w + "] = " + distTo[w]);
return false;
}
}
}
for (int w = 0; w < G.V(); w++)
{
if (!marked(w) || w == s)
continue;
int v = edgeTo[w];
if (distTo[w] != distTo[v] + 1) // 逐边检查距离正确性
{
StdOut.println("shortest path edge " + v + "-" + w);
StdOut.println("distTo[" + v + "] = " + distTo[v]);
StdOut.println("distTo[" + w + "] = " + distTo[w]);
return false;
}
}
return true;
} public static void main(String[] args)
{
In in = new In(args[0]);
int s = Integer.parseInt(args[1]);
Graph G = new Graph(in);
class01 search = new class01(G, s);
for (int v = 0; v < G.V(); v++)
{
if (search.marked(v))
{
StdOut.printf("%d to %d (%d): ", s, v, search.distTo(v));
for (int x : search.pathTo(v))
{
if (x == s)
StdOut.print(x);
else
StdOut.print("-" + x);
}
StdOut.println();
}
else
StdOut.printf("%d to %d (-): not connected\n", s, v);
}
}
}

● 有向图广度优先遍历

 package package01;

 import edu.princeton.cs.algs4.In;
import edu.princeton.cs.algs4.StdOut;
import edu.princeton.cs.algs4.Digraph;
import edu.princeton.cs.algs4.Stack;
import edu.princeton.cs.algs4.Queue; public class class01
{
private static final int INFINITY = Integer.MAX_VALUE;
private boolean[] marked;
private int[] edgeTo;
private int[] distTo; public class01(Digraph G, int s)
{
marked = new boolean[G.V()];
distTo = new int[G.V()];
edgeTo = new int[G.V()];
for (int v = 0; v < G.V(); v++)
distTo[v] = INFINITY;
nonRecursiveBFS(G, s);
} private void nonRecursiveBFS(Digraph G, int s)
{
Queue<Integer> q = new Queue<Integer>();
distTo[s] = 0;
marked[s] = true;
for (q.enqueue(s); !q.isEmpty();)
{
int v = q.dequeue();
for (int w : G.adj(v))
{
if (!marked[w])
{
edgeTo[w] = v;
distTo[w] = distTo[v] + 1;
marked[w] = true;
q.enqueue(w);
}
}
}
} private void nonRecursiveBFS(Digraph G, Iterable<Integer> sources)
{
Queue<Integer> q = new Queue<Integer>();
for (int s : sources)
{
marked[s] = true;
distTo[s] = 0;
q.enqueue(s);
}
for (;!q.isEmpty();)
{
int v = q.dequeue();
for (int w : G.adj(v))
{
if (!marked[w])
{
edgeTo[w] = v;
distTo[w] = distTo[v] + 1;
marked[w] = true;
q.enqueue(w);
}
}
}
} public boolean marked(int v)
{
return marked[v];
} public int distTo(int v)
{
return distTo[v];
} public Iterable<Integer> pathTo(int v)
{
if (!marked(v))
return null;
Stack<Integer> path = new Stack<Integer>();
int x;
for (x = v; distTo[x] != 0; x = edgeTo[x])
path.push(x);
path.push(x);
return path;
} public static void main(String[] args)
{
In in = new In(args[0]);
int s = Integer.parseInt(args[1]);
Digraph G = new Digraph(in);
class01 search = new class01(G, s);
for (int v = 0; v < G.V(); v++)
{
if (search.marked(v))
{
StdOut.printf("%d to %d (%d): ", s, v, search.distTo(v));
for (int x : search.pathTo(v))
{
if (x == s)
StdOut.print(x);
else
StdOut.print("->" + x);
}
StdOut.println();
}
else
StdOut.printf("%d to %d (-): not connected\n", s, v);
}
}
}

《算法》第四章部分程序 part 5的更多相关文章

  1. 《算法》第四章部分程序 part 19

    ▶ 书中第四章部分程序,包括在加上自己补充的代码,有边权有向图的邻接矩阵,FloydWarshall 算法可能含负环的有边权有向图任意两点之间的最短路径 ● 有边权有向图的邻接矩阵 package p ...

  2. 《算法》第四章部分程序 part 18

    ▶ 书中第四章部分程序,包括在加上自己补充的代码,在有权有向图中寻找环,Bellman - Ford 算法求最短路径,套汇算法 ● 在有权有向图中寻找环 package package01; impo ...

  3. 《算法》第四章部分程序 part 16

    ▶ 书中第四章部分程序,包括在加上自己补充的代码,Dijkstra 算法求有向 / 无向图最短路径,以及所有顶点对之间的最短路径 ● Dijkstra 算法求有向图最短路径 package packa ...

  4. 《算法》第四章部分程序 part 15

    ▶ 书中第四章部分程序,包括在加上自己补充的代码,Kruskal 算法和 Boruvka 算法求最小生成树 ● Kruskal 算法求最小生成树 package package01; import e ...

  5. 《算法》第四章部分程序 part 14

    ▶ 书中第四章部分程序,包括在加上自己补充的代码,两种 Prim 算法求最小生成树 ● 简单 Prim 算法求最小生成树 package package01; import edu.princeton ...

  6. 《算法》第四章部分程序 part 10

    ▶ 书中第四章部分程序,包括在加上自己补充的代码,包括无向图连通分量,Kosaraju - Sharir 算法.Tarjan 算法.Gabow 算法计算有向图的强连通分量 ● 无向图连通分量 pack ...

  7. 《算法》第四章部分程序 part 9

    ▶ 书中第四章部分程序,包括在加上自己补充的代码,两种拓扑排序的方法 ● 拓扑排序 1 package package01; import edu.princeton.cs.algs4.Digraph ...

  8. 《算法》第四章部分程序 part 17

    ▶ 书中第四章部分程序,包括在加上自己补充的代码,无环图最短 / 最长路径通用程序,关键路径方法(critical path method)解决任务调度问题 ● 无环图最短 / 最长路径通用程序 pa ...

  9. 《算法》第四章部分程序 part 13

    ▶ 书中第四章部分程序,包括在加上自己补充的代码,图的前序.后序和逆后续遍历,以及传递闭包 ● 图的前序.后序和逆后续遍历 package package01; import edu.princeto ...

  10. 《算法》第四章部分程序 part 12

    ▶ 书中第四章部分程序,包括在加上自己补充的代码,图的几种补充数据结构,包括无向 / 有向符号图,有权边结构,有边权有向图 ● 无向符号图 package package01; import edu. ...

随机推荐

  1. windows的消息传递--消息盒子

    例如对windows发消息让文本选中.     SendMessage(Text1.hwnd,EM_GETSEL,0,-1 ); EC_LEFTMARGIN(&H1) EC_USEFONTIN ...

  2. NDK学习笔记(二)

    花了点时间把pixeliop的部分看完了,拿到开发文档提供的案例稍事修改,把画面左半边压暗. 这个案例重点在于理清pixel_engine()函数中的坐标与scanline的关系. y代表当前正在调用 ...

  3. IDEA创建Springmvc项目

    项目主要步骤如下: 1.创建一个javaweb动态项目 2.导入springmvc demo所需要的jar包 3.生成项目war包 4.配置项目tomacat服务器 5.配置web.xml文件 6.编 ...

  4. C++进阶--静态初始化的惨败

    /* Initialization Fiasco 一个会使程序崩溃的细微的问题 */ // 不同文件的编译顺序是不确定的 // 如果一个文件依赖另一个文件的对象先初始化,可能出现问题 // 解决方法: ...

  5. JVM异常之:直接内存溢出

    示例: package com.dxz.jvm; import java.lang.reflect.Field; import sun.misc.Unsafe; /** * @Described:直接 ...

  6. 学习笔记之The Intelligent Investor, Rev. Ed

    The Intelligent Investor, Rev. Ed https://www.safaribooksonline.com/library/view/the-intelligent-inv ...

  7. Hive深入学习--应用场景及架构原理

    Hive背景介绍 Hive最初是Facebook为了满足对海量社交网络数据的管理和机器学习的需求而产生和发展的.互联网现在进入了大数据时代,大数据是现在互联网的趋势,而hadoop就是大数据时代里的核 ...

  8. hadoop本地运行模式调试

    一:简介 最近学习hadoop本地运行模式,在运行期间遇到一些问题,记录下来备用:以运行hadoop下wordcount为例子. hadoop程序是在集群运行还是在本地运行取决于下面两个参数的设置,第 ...

  9. MongoDb进阶实践之一 如何在Linux系统上安装和配置MongoDB

    转载来源:https://www.cnblogs.com/PatrickLiu/p/8630151.html 一.NoSQL数据简介 1.NoSQL概念 NoSQL(NoSQL = Not Only ...

  10. javascript将list转换成树状结构

    /** * 将list装换成tree * @param {Object} myId 数据主键id * @param {Object} pId 数据关联的父级id * @param {Object} l ...