Programming Assignment 3: Pattern Recognition
编程作业三
作业链接:Pattern Recognition & Checklist
我的代码:BruteCollinearPoints.java & FastCollinearPoints.java & Point.java
问题简介
计算机视觉涉及分析视觉图像中的模式并重建产生它们的现实世界对象。该过程通常分为两个阶段:特征检测和模式识别。特征检测涉及选择图像的重要特征;模式识别涉及发现特征中的模式。我们将研究一个涉及点和线段的特别简单的模式识别问题。这种模式识别出现在许多其他应用中,例如统计数据分析。
The problem. Given a set of n distinct points in the plane, find every(maximal) line segment that connects a subset of 4 or more of the points.
给定一些点,要求找到所有至少包含四个点的线段。
任务摘要
Point data type. Create an immutable data type Point that represents a point in the plane by implementing the following API:
public class Point implements Comparable<Point> {
public Point(int x, int y) // constructs the point (x, y) public void draw() // draws this point
public void drawTo(Point that) // draws the line segment from this point to that point
public String toString() // string representation public int compareTo(Point that) // compare two points by y-coordinates, breaking ties by x-coordinates
public double slopeTo(Point that) // the slope between this point and that point
public Comparator<Point> slopeOrder() // compare two points by slopes they make with this point
}
实现表示点的数据类型,要求完成后三个方法,详细参见:specification。
Brute force. Write a program BruteCollinearPoints.java that examines 4 points at a time and checks whether they all lie on the same line segment, returning all such line segments. To check whether the 4 points p, q, r, and s are collinear, check whether the three slopes between p and q, between p and r, and between p and s are all equal.
public class BruteCollinearPoints {
public BruteCollinearPoints(Point[] points) // finds all line segments containing 4 points
public int numberOfSegments() // the number of line segments
public LineSegment[] segments() // the line segments
}
除了暴力检测每四个点是否共线(\(n^{4}\)),还有更快的做法,对点 P:
把 P 当做原点。
其它点按和点 P 的斜率(slope)排序。
检查是否有三个点(或者更多)有同样的斜率。如果有,那这些点和点 P 就构成目标线段。
对其它的点,重复上述过程,就能找到所有目标线段,因为排序把斜率一样的点聚在一起。而这算法更快是因为瓶颈操作是排序,排序是 nlgn,最后是 \(n^{2}lgn\),也比 \(n^{4}\) 好得多。
Write a program FastCollinearPoints.java that implements this algorithm.
public class FastCollinearPoints {
public FastCollinearPoints(Point[] points) // finds all line segments containing 4 or more points
public int numberOfSegments() // the number of line segments
public LineSegment[] segments() // the line segments
}
问题分析
仍然按照 Checklist 里建议的编程步骤,先实现 Point.java。下载 Point.java,完成要求实现的方法。实际上,specification 里说得挺详细的,没什么问题,大概主要是让我们熟悉下可比较接口和比较器。
The compareTo() method should compare points by their y-coordinates, breaking ties by their x-coordinates. Formally, the invoking point (x0, y0) is less than the argument point (x1, y1) if and only if either y0 < y1 or if y0 = y1 and x0 < x1.
The slopeTo() method should return the slope between the invoking point (x0, y0) and the argument point (x1, y1), which is given by the formula (y1 − y0) / (x1 − x0). Treat the slope of a horizontal line segment as positive zero; treat the slope of a vertical line segment as positive infinity; treat the slope of a degenerate line segment (between a point and itself) as negative infinity.
The slopeOrder() method should return a comparator that compares its two argument points by the slopes they make with the invoking point (x0, y0). Formally, the point (x1, y1) is less than the point (x2, y2) if and only if the slope (y1 − y0) / (x1 − x0) is less than the slope (y2 − y0) / (x2 − x0). Treat horizontal, vertical, and degenerate line segments as in the slopeTo() method.
Do not override the equals() or hashCode() methods.
slopeTo() 方法两个点连线水平时返回正零,Checklist 里也有解释。
What does it mean for slopeTo() to return positive zero?
Java (and the IEEE 754 floating-point standard) define two representations of zero: negative zero and positive zero.
double a = 1.0;
double x = (a - a) / a; // positive zero ( 0.0)
double y = (a - a) / -a; // negative zero (-0.0)
Note that while (x == y) is guaranteed to be true, Arrays.sort() treats negative zero as strictly less than positive zero. Thus, to make the specification precise, we require you to return positive zero for horizontal line segments. Unless your program casts to the wrapper type Double (either explicitly or via autoboxing), you probably will not notice any difference in behavior; but, if your program does cast to the wrapper type and fails only on (some) horizontal line segments, this may be the cause.
接着实现 BruteCollinearPoints.java ,逻辑比较简单,还给了很多提示,也没问题。
To form a line segment, you need to know its endpoints. One approach is to form a line segment only if the 4 points are in ascending order (say, relative to the natural order), in which case, the endpoints are the first and last points.
Hint: don't waste time micro-optimizing the brute-force solution. Though, there are two easy opportunities. First, you can iterate through all combinations of 4 points (N choose 4) instead of all 4 tuples (N^4), saving a factor of 4! = 24. Second, you don't need to consider whether 4 points are collinear if you already know that the first 3 are not collinear; this can save you a factor of N on typical inputs.
把点排下序,线段的起始点自然就是遍历的头尾,甚至也教我们怎么排序。
How do I sort a subarray in Java?
Arrays.sort(a, lo, hi) sorts the subarray from a[lo] to a[hi-1] according to the natural order of a[]. You can use a Comparator as the fourth argument to sort according to an alternate order.
于是,最后的 FastCollinearPoints.java 相对复杂些。我是用了两个排序,一开始和暴力算法一样先按自然顺序排,就是先比 y 再比 x 那种,另一个是遍历点的时候按和该点的斜率排。斜率一样计数的就 ++,不小于三个再看这点的自然顺序是不是最小,是最小才将其和自然顺序最大的组成线段存起来。通过这种方法,获得线段的起始点,避免重复加入线段。
测试结果
Programming Assignment 3: Pattern Recognition的更多相关文章
- Algorithms : Programming Assignment 3: Pattern Recognition
Programming Assignment 3: Pattern Recognition 1.题目重述 原题目:Programming Assignment 3: Pattern Recogniti ...
- Coursera Algorithms Programming Assignment 3: Pattern Recognition (100分)
题目原文详见http://coursera.cs.princeton.edu/algs4/assignments/collinear.html 程序的主要目的是寻找n个points中的line seg ...
- Pattern Recognition and Machine Learning-02-1.0-Introduction
Introduction The problem of searching for patterns in data is a fundamental one and has a long and s ...
- Pattern Recognition And Machine Learning读书会前言
读书会成立属于偶然,一次群里无聊到极点,有人说Pattern Recognition And Machine Learning这本书不错,加之有好友之前推荐过,便发了封群邮件组织这个读书会,采用轮流讲 ...
- Pattern Recognition and Machine Learning (preface translation)
前言 鉴于机器学习产生自计算机科学,模式识别却起源于工程学.然而,这些活动能被看做同一个领域的两个方面,并且他们同时在这过去的十年间经历了本质上的发展.特别是,当图像模型已经作为一个用来描述和应用概率 ...
- 获取Avrix上Computer Vision and Pattern Recognition的论文,进一步进行统计分析。
此文主要记录我在18年寒假期间,收集Avrix论文的总结 寒假生活题外 在寒假期间,爸妈每天让我每天跟着他们6点起床,一起吃早点收拾,每天7点也就都收拾差不多. 早晨的时光是人最清醒的时刻,而 ...
- 课程一(Neural Networks and Deep Learning),第三周(Shallow neural networks)—— 3.Programming Assignment : Planar data classification with a hidden layer
Planar data classification with a hidden layer Welcome to the second programming exercise of the dee ...
- Algorithms: Design and Analysis, Part 1 - Programming Assignment #1
自我总结: 1.编程的思维不够,虽然分析有哪些需要的函数,但是不能比较好的汇总整合 2.写代码能力,容易挫败感,经常有bug,很烦心,耐心不够好 题目: In this programming ass ...
- talib 中文文档(十二):Pattern Recognition Functions K线模式识别,形态识别
Pattern Recognition Functions K线模式识别,形态识别 CDL2CROWS - Two Crows 函数名:CDL2CROWS 名称:Two Crows 两只乌鸦 简介:三 ...
随机推荐
- Redhat6.8安装Oracle11g下遇到两个问题记录
问题一: 刚刚安装完毕Oracle之后,尝试sqlplus登陆报错,TNS:net service name is incorrectly specified 参考文章:关于环境变量ORACLE_SI ...
- Oracle XE快捷版(速成版)的限制
1.CPU上限:无论把数据库安装在多少核的服务器上,都只会提供一个CPU核心的运算能力 2.安装和执行限制:只能安装一个实例且只能运行一个实例 3.用户数据上限:最大11G的用户数据 4.内存使用上限 ...
- ADO.NET 【攻击及防御】
sql字符串注入攻击 SQL注入攻击是黑客对数据库进行攻击的常用手段之一.SQL注入的手法相当灵活 SQL注入攻击会导致的数据库安全风险包括:刷库.拖库.撞库. 一般来说,SQL注入一般存在于形如:H ...
- Java集合类源码解析:LinkedHashMap
前言 今天继续学习关于Map家族的另一个类 LinkedHashMap .先说明一下,LinkedHashMap 是继承于 HashMap 的,所以本文只针对 LinkedHashMap 的特性学习, ...
- [转载]常用 SQL Server 规范集锦
转载者注:据说是某公司(携程)内部规范. 常见的字段类型选择 1.字符类型建议采用varchar/nvarchar数据类型 2.金额货币建议采用money数据类型 3.科学计数建议采用numeric数 ...
- Mock session,cookie,querystring in ASB.NET MVC
写测试用例的时候经常发现,所写的功能需要Http上下文的支持(session,cookie)这类的. 以下介绍2种应用场景. 用于控制器内Requet获取参数 控制器内的Requet其实是控制器内的属 ...
- 【Linux】编辑文件时,箭头按键还有BACKSPACE按键不能正常使用的解决办法
需要安装vim sudo apt-get remove vim-common sudo apt-get install vim
- docker 知识点汇总
目录 什么是 Docker Docker 简介 Docker 的特点 如何使用 Docker 镜像的常用操作 容器的常用操作 Docker 命令汇总 手工制作 java 镜像 使用 Dockerfil ...
- Vue之组件使用(一)
这仅仅是个人为了防止忘记做的笔记而已,仅供参考,有不对的地方请纠正 组件这种东西用来封装多次使用的控件还是很有用处的,我还是挺喜欢这种模式,优化了前端的工作,写个组件也比较简单.下次有时间记录一下样式 ...
- SSM整合的配置文件
一.spring-web.xml <?xml version="1.0" encoding="UTF-8"?> <beans xmlns=&q ...