快速数论变换(NTT)
刚学完FFT,干脆把NTT也学了算了
(一)预备知识
关于原根,这里说得蛮详细的百度百科
为什么使用原根呢?为什么原根可以替代\(\omega_{n}\)呢?想知道为什么就看here
NTT用到的各种素数,在这里here
(二)重要知识
直接上代码
原题洛谷P1919
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
typedef long long ll;
typedef double dd;
#define For(i,j,k) for (int i=j;i<=k;++i)
#define Forr(i,j,k) for (int i=j;i>=k;--i)
#define Set(a,p) memset(a,p,sizeof(a))
using namespace std;
template<typename T>bool chkmax(T& a,T b) {return a<b?a=b,1:0;}
template<typename T>bool chkmin(T& a,T b) {return a>b?a=b,1:0;}
const int maxn=200000+100;
const ll modd=998244353;
int n,N,cnt;
int p[maxn];
ll g,a[maxn],b[maxn];
char ss[maxn];
ll quick(ll a,ll b) {
ll s=1;
while (b) {
if (b%2) s=s*a%modd;
a=a*a%modd; b/=2;
}
return s;
}
inline void NTT(ll *s,int type) {
For (i,0,N-1)
if (i<p[i]) swap(s[i],s[p[i]]);
for (int mid=1;mid<N;mid<<=1) {
int len=mid<<1;
ll wn=quick(g,type==1?(modd-1)/len:modd-1-(modd-1)/len);
for (int j=0;j<N;j+=len) {
ll w=1;
for (int k=0;k<mid;++k,w=w*wn%modd) {
ll t=w*s[j+mid+k]%modd;
s[j+mid+k]=(s[j+k]-t+modd)%modd;
s[j+k]=(s[j+k]+t)%modd;
}
}
}
if (type==-1) {
ll inv=quick(N,modd-2);
For (i,0,N) s[i]=s[i]*inv%modd;
}
}
int main() {
scanf("%d",&n);
scanf("%s",ss);
For (i,0,n-1) a[i]=ss[n-1-i]-'0';
scanf("%s",ss);
For (i,0,n-1) b[i]=ss[n-1-i]-'0';
for (N=1;N<2*n;N<<=1,++cnt) ;
For (i,0,N-1) p[i]=p[i>>1]>>1 | ((i&1)<<(cnt-1));
g=3;
NTT(a,1); NTT(b,1);
For (i,0,N) a[i]=a[i]*b[i]%modd;
NTT(a,-1);
ll x=0;
For (i,0,N) {
a[i]+=x; x=a[i]/10; a[i]%=10;
}
while (!a[N]) N--;
Forr (i,N,0) printf("%lld",a[i]);
return 0;
}
代码要注意,long long 不可乱用!!!
快速数论变换(NTT)的更多相关文章
- 【算法】快速数论变换(NTT)初探
[简介] 快速傅里叶变换(FFT)运用了单位复根的性质减少了运算,但是每个复数系数的实部和虚部是一个余弦和正弦函数,因此系数都是浮点数,而浮点数的运算速度较慢且可能产生误差等精度问题,因此提出了以数论 ...
- Algorithm: 多项式乘法 Polynomial Multiplication: 快速傅里叶变换 FFT / 快速数论变换 NTT
Intro: 本篇博客将会从朴素乘法讲起,经过分治乘法,到达FFT和NTT 旨在能够让读者(也让自己)充分理解其思想 模板题入口:洛谷 P3803 [模板]多项式乘法(FFT) 朴素乘法 约定:两个多 ...
- JZYZOJ 2041 快速数论变换 NTT 多项式
http://172.20.6.3/Problem_Show.asp?id=2041 https://blog.csdn.net/ggn_2015/article/details/68922404 代 ...
- [快速数论变换 NTT]
先粘一个模板.这是求高精度乘法的 #include <bits/stdc++.h> #define maxn 1010 using namespace std; char s[maxn]; ...
- 快速数论变换(NTT)小结
NTT 在FFT中,我们需要用到复数,复数虽然很神奇,但是它也有自己的局限性--需要用double类型计算,精度太低 那有没有什么东西能够代替复数且解决精度问题呢? 这个东西,叫原根 原根 阶 若\( ...
- 模板 - 数学 - 多项式 - 快速数论变换/NTT
Huffman分治的NTT,常数一般.使用的时候把多项式的系数们放进vector里面,然后调用solve就可以得到它们的乘积.注意这里默认最大长度是1e6,可能需要改变. #include<bi ...
- 快速数论变换NTT模板
51nod 1348 乘积之和 #include <cmath> #include <iostream> #include <cstdio> #include &l ...
- 从傅里叶变换(FFT)到数论变换(NTT)
FFT可以用来计算多项式乘法,但是复数的运算中含有大量的浮点数,精度较低.对于只有整数参与运算的多项式,有时,\(\text{NTT(Number-Theoretic Transform)}\)会是更 ...
- 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/常用套路【入门】
原文链接https://www.cnblogs.com/zhouzhendong/p/Fast-Fourier-Transform.html 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/ ...
- 「算法笔记」快速数论变换(NTT)
一.简介 前置知识:多项式乘法与 FFT. FFT 涉及大量 double 类型数据操作和 \(\sin,\cos\) 运算,会产生误差.快速数论变换(Number Theoretic Transfo ...
随机推荐
- Java虚拟机 - 类加载机制
[深入Java虚拟机]之四:类加载机制 类加载过程 类从被加载到虚拟机内存中开始,到卸载出内存为止,它的整个生命周期包括:加载.验证.准备.解析.初始化.使用和卸载七个阶段.它们开始的顺序如下 ...
- 解决 iframe 后退不是主页面后退(浏览器 history)问题
前言:项目中的主页面里有 iframe,切换 iframe 的 src 地址之后,再点浏览器的回退之后,会导致 iframe 里面回退,而不是主页面回退. 问题 浏览器机制的原因,在 iframe 导 ...
- nginx+tomcat抵御慢速连接攻击
一.安装nginx apt-get install nginx 安装中途可能会要求填写许可,输入‘y’就好了 如果安装提示“E: Unable to locate package nginx”,那么输 ...
- [转载] Spring框架——AOP前置、后置、环绕、异常通知
通知类型: 步骤: 1. 定义接口 2. 编写对象(被代理对象=目标对象) 3. 编写通知(前置通知目标方法调用前调用) 4. 在beans.xml文件配置 4.1 配置 被代理对象=目标对象 4.2 ...
- Docker在windows7上的安装
Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的 Linux 机器上,也可以实现虚拟化.容器是完全使用沙箱机制,相互之间不会有任何 ...
- javascript:类数组 -- 对象
在javascript中,对象与数组都是这门语言的原生规范中的基本数据类型,处于并列的位置. 类数组:本质是一个对象,只是这个 对象 的属性有点特殊,模拟出数组的一些特性. 一般来说,如果我们有一个 ...
- 【代码笔记】iOS-NSJSONSerializationDemo
一,代码. - (void)viewDidLoad { [super viewDidLoad]; // Do any additional setup after loading the view. ...
- span元素文字自动换行
<span>加上display:inline-block,成功实现了想要的效果.但又有一个问题,纯连续字母和数字不会换行,最后加上word-wrap: break-word强制自动换行搞定 ...
- iTerm通过堡垒机自动登录服务器
为了保障网络和数据安全,越来越多公司使用堡垒机.iTerm作为一个好用的终端利器,要实现自动通过堡垒机登录服务器的方式有多种.下面我就来介绍一种通过expect脚本的方式完成配置. 第一步,进入/us ...
- c# 子窗体打开或者切换就最大化
“用MDI方式打开一个子窗口体后,总是不能最大化显示,明明子窗口体的WindowState设置为Maximized?”,相信有很多人会遇到这的样问题,请按下面的方法设置即可使MDI子窗体最大化:1.把 ...