CATEGORICAL, ORDINAL AND INTERVAL VARIABLES
WHAT IS THE DIFFERENCE BETWEEN CATEGORICAL, ORDINAL AND INTERVAL VARIABLES?
In talking about variables, sometimes you hear variables being described as categorical (or sometimesnominal), or ordinal, or interval. Below we will define these terms and explain why they are important.
Categorical
A categorical variable (sometimes called a nominal variable) is one that has two or more categories, but there is no intrinsic ordering to the categories. For example, gender is a categorical variable having two categories (male and female) and there is no intrinsic ordering to the categories. Hair color is also a categorical variable having a number of categories (blonde, brown, brunette, red, etc.) and again, there is no agreed way to order these from highest to lowest. A purely categorical variable is one that simply allows you to assign categories but you cannot clearly order the variables. If the variable has a clear ordering, then that variable would be an ordinal variable, as described below.
Ordinal
An ordinal variable is similar to a categorical variable. The difference between the two is that there is a clear ordering of the variables. For example, suppose you have a variable, economic status, with three categories (low, medium and high). In addition to being able to classify people into these three categories, you can order the categories as low, medium and high. Now consider a variable like educational experience (with values such as elementary school graduate, high school graduate, some college and college graduate). These also can be ordered as elementary school, high school, some college, and college graduate. Even though we can order these from lowest to highest, the spacing between the values may not be the same across the levels of the variables. Say we assign scores 1, 2, 3 and 4 to these four levels of educational experience and we compare the difference in education between categories one and two with the difference in educational experience between categories two and three, or the difference between categories three and four. The difference between categories one and two (elementary and high school) is probably much bigger than the difference between categories two and three (high school and some college). In this example, we can order the people in level of educational experience but the size of the difference between categories is inconsistent (because the spacing between categories one and two is bigger than categories two and three). If these categories were equally spaced, then the variable would be an interval variable.
Interval
An interval variable is similar to an ordinal variable, except that the intervals between the values of the interval variable are equally spaced. For example, suppose you have a variable such as annual income that is measured in dollars, and we have three people who make $10,000, $15,000 and $20,000. The second person makes $5,000 more than the first person and $5,000 less than the third person, and the size of these intervals is the same. If there were two other people who make $90,000 and $95,000, the size of that interval between these two people is also the same ($5,000).
Why does it matter whether a variable is categorical, ordinal or interval?
Statistical computations and analyses assume that the variables have a specific levels of measurement. For example, it would not make sense to compute an average hair color. An average of a categorical variable does not make much sense because there is no intrinsic ordering of the levels of the categories. Moreover, if you tried to compute the average of educational experience as defined in the ordinal section above, you would also obtain a nonsensical result. Because the spacing between the four levels of educational experience is very uneven, the meaning of this average would be very questionable. In short, an average requires a variable to be interval. Sometimes you have variables that are “in between” ordinal and interval, for example, a five-point likert scale with values “strongly agree”, “agree”, “neutral”, “disagree” and “strongly disagree”. If we cannot be sure that the intervals between each of these five values are the same, then we would not be able to say that this is an interval variable, but we would say that it is an ordinal variable. However, in order to be able to use statistics that assume the variable is interval, we will assume that the intervals are equally spaced.
Does it matter if my dependent variable is normally distributed?
When you are doing a t-test or ANOVA, the assumption is that the distribution of the sample means are normally distributed. One way to guarantee this is for the distribution of the individual observations from the sample to be normal. However, even if the distribution of the individual observations is not normal, the distribution of the sample means will be normally distributed if your sample size is about 30 or larger. This is due to the “central limit theorem” that shows that even when a population is non-normally distributed, the distribution of the “sample means” will be normally distributed when the sample size is 30 or more, for example see Central limit theorem demonstration .
If you are doing a regression analysis, then the assumption is that your residuals are normally distributed. One way to make it very likely to have normal residuals is to have a dependent variable that is normally distributed and predictors that are all normally distributed, however this is not necessary for your residuals to be normally distributed. You can see
- Regression with Stata: Chapter 2 – Regression Diagnostics
- Regression with SAS: Chapter 2 -Regression Diagnostics
- Introduction to Regression with SPSS: Lesson 2 – Regression Diagnostics
CATEGORICAL, ORDINAL AND INTERVAL VARIABLES的更多相关文章
- 【转】The difference between categorical(Nominal ), ordinal and interval variables
What is the difference between categorical, ordinal and interval variables? In talking about variabl ...
- 关于使用sklearn进行数据预处理 —— 归一化/标准化/正则化
一.标准化(Z-Score),或者去除均值和方差缩放 公式为:(X-mean)/std 计算时对每个属性/每列分别进行. 将数据按期属性(按列进行)减去其均值,并处以其方差.得到的结果是,对于每个属 ...
- SAS-决策树模型
决策树是日常建模中使用最普遍的模型之一,在SAS中,除了可以通过EM模块建立决策树模型外,还可以通过SAS代码实现.决策树模型在SAS系统中对应的过程为Proc split或Proc hpsplit, ...
- Parametric Statistics
1.What are “Parametric Statistics”? 统计中的参数指的是总体的一个方面,而不是统计中的一个方面,后者指的是样本的一个方面.例如,总体均值是一个参数,而样本均值是一个统 ...
- Chapter 02—Creating a dataset(Part1)
一. 数据集 1. 在R语言中,进行数据分析的第一步是创建一个包含待研究数据并且符合要求的数据集. · 选择装数据的数据结构 · 把数据装入数据结构中 2. 理解数据集 (1)数据集通常是矩形的数据列 ...
- SAS数据挖掘实战篇【六】
SAS数据挖掘实战篇[六] 6.3 决策树 决策树主要用来描述将数据划分为不同组的规则.第一条规则首先将整个数据集划分为不同大小的 子集,然后将另外的规则应用在子数据集中,数据集不同相应的规则也不同 ...
- MatterTrack Route Of Network Traffic :: Matter
Python 1.1 基础 while语句 字符串边缘填充 列出文件夹中的指定文件类型 All Combinations For A List Of Objects Apply Operations ...
- 精通D3.js学习笔记(2)比例尺和坐标
1.线性比例尺 d3.scale.linear() 创建一个线性比例尺 .domain([0,500]) 定义域 .range([0,1000]) 值域 l ...
- 机器学习算法基础(Python和R语言实现)
https://www.analyticsvidhya.com/blog/2015/08/common-machine-learning-algorithms/?spm=5176.100239.blo ...
随机推荐
- HttpServlet Service方法
service() 方法是执行实际任务的主要方法.Servlet 容器(即 Web 服务器)调用 service() 方法来处理来自客户端(浏览器)的请求,并把格式化的响应写回给客户端. 每次服务器接 ...
- yum与apt命令比较,yum安装出现No package vim available解决办法
yum (Yellowdog Updater Modified)是一个集与查找,安装,更新和删除程序的Linux软件.它运行在RPM包兼容的Linux发行版本上,如:RedHat, Fedora, S ...
- 某题目2 状压DP
Description 对于一个数列,其混乱度定义为连续相等的数的段数.如:1 2 1 2 1,其混乱度为5,而:1 2 2 3 3,其混乱度为3.现给出一个数列,允许取出k个数并允许插入数列中的任意 ...
- C#中四种常用集合的运用(非常重要)
C#中4个常用的集合 1.ArrayList ArrayList类似于数组,有人也称它为数组列表.ArrayList可以动态维护,而数组的容量是固定的. 它的索引会根据程序的扩展而重新进行分配和调整. ...
- 使用 IntraWeb (14) - 基本控件之 TIWHRule、TIWRectangle
TIWHRule //一条横线, 对应 Html 中的 <hr/> TIWRectangle //矩形; 中间可以有行文本, 文本可任意对齐 TIWHRule 所在单元及继承链: IWHT ...
- RSS介绍、RSS 2.0规范说明和示例代码
RSS是一种消息来源格式规范,用以发布经常更新资料的网站,例如博客.新闻的网摘.RSS文件,又称做摘要.网摘.更新.频道等,包含了全文或节选文字,再加上一定的属性数据.RSS让发布者自动发布信息,也使 ...
- [转].net reactor 学习系列(五)---源代码加密程序
.NET Reactor使用教程(加密源代码示例) 1.打开 Eziriz .NET Reactor,主界面如图1所示: 图1 2.单击 Main Assembly 右边的 Open,选择要加密的软件 ...
- Android内存机制分析——堆和栈
昨天用Gallery做了一个图片浏览选择开机画面的功能,当我加载的图片多了就出现OOM问题.以前也出现过这个问题,那时候并没有深究.这次打算好好分析一下Android的内存机制. 因为我以前是做VC+ ...
- SOC 与 ARM
SOC是指片上系统,意思是一个芯片就构成一个包括了存储.CPU.甚至还有AD.UART等等其他资源的系统!而ARM只是CPU的一种,有的片上系统是51.nios.PIC.等等不一而是!特别是nios, ...
- RPM软件包管理的查询功能 转
RPM软件包管理的查询功能: 命令格式 rpm {-q|--query} [select-options] [query-options] RPM的查询功能是极为强大,是极为重要的功能之一:举几个常用 ...