Optimal Milking
Time Limit: 2000MS   Memory Limit: 30000K
Total Submissions: 17811   Accepted: 6368
Case Time Limit: 1000MS

Description

FJ has moved his K (1 <= K <= 30) milking machines out into the cow pastures among the C (1 <= C <= 200) cows. A set of paths of various lengths runs among the cows and the milking machines. The milking machine locations are named by ID numbers 1..K; the cow locations are named by ID numbers K+1..K+C.

Each milking point can "process" at most M (1 <= M <= 15) cows each day.

Write a program to find an assignment for each cow to some milking machine so that the distance the furthest-walking cow travels is minimized (and, of course, the milking machines are not overutilized). At least one legal assignment is possible for all input
data sets. Cows can traverse several paths on the way to their milking machine. 

Input

* Line 1: A single line with three space-separated integers: K, C, and M.

* Lines 2.. ...: Each of these K+C lines of K+C space-separated integers describes the distances between pairs of various entities. The input forms a symmetric matrix. Line 2 tells the distances from milking machine 1 to each of the other entities; line 3 tells
the distances from machine 2 to each of the other entities, and so on. Distances of entities directly connected by a path are positive integers no larger than 200. Entities not directly connected by a path have a distance of 0. The distance from an entity
to itself (i.e., all numbers on the diagonal) is also given as 0. To keep the input lines of reasonable length, when K+C > 15, a row is broken into successive lines of 15 numbers and a potentially shorter line to finish up a row. Each new row begins on its
own line. 

Output

A single line with a single integer that is the minimum possible total distance for the furthest walking cow. 

Sample Input

2 3 2
0 3 2 1 1
3 0 3 2 0
2 3 0 1 0
1 2 1 0 2
1 0 0 2 0

Sample Output

2

Source

——————————————————————————————————

题目给出n头牛和m台机器的两两距离,0表示走不通,和每台机器最多容纳的牛数量,问每头牛都去一台机器,最远的牛到机器的最小距离

思路:先floyd跑出两两之间最短距离,在二分最远距离+二分图多重匹配||最大流验证

二分图多重匹配:

#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <queue>
#include <vector>
#include <set>
#include <stack>
#include <map>
#include <climits>
using namespace std; #define LL long long
const int INF = 0x3f3f3f3f;
const int MAXN=1005;
int uN,vN; //u,v数目
int g[MAXN][MAXN];
int linker[MAXN][MAXN];
bool used[MAXN];
int linknum[MAXN];
int cap[MAXN];
int mp[MAXN][MAXN];
int N; bool dfs(int u,int mid)
{
int v;
for(v=1; v<=vN; v++)
if(mp[u][v]<=mid&&!used[v])
{
used[v]=true;
if(linknum[v]<cap[v])
{
linker[v][++linknum[v]]=u;
return true;
}
for(int i=1; i<=cap[v]; i++)
if(dfs(linker[v][i],mid))
{
linker[v][i]=u;
return true;
}
}
return false;
} int hungary(int mid)
{
int res=0;
int u;
memset(linknum,0,sizeof linknum);
memset(linker,-1,sizeof linker);
for(u=vN+1; u<=N; u++)
{
memset(used,0,sizeof used);
if(dfs(u,mid)) res++;
}
return res;
} void floyd(){
for(int k = 1; k <= N; ++k){
for(int i = 1; i <= N; ++i){
for(int j = 1; j <= N; ++j){
mp[i][j] = min(mp[i][j], mp[i][k] + mp[k][j]);
}
}
}
}
int main()
{
int n,m,k;
while(~scanf("%d%d%d",&vN,&uN,&k))
{
N=uN+vN;
int mx=-1;
for(int i=1; i<=N; i++)
for(int j=1; j<=N; j++)
{
scanf("%d",&mp[i][j]);
mx=max(mx,mp[i][j]);
if(mp[i][j]==0)
mp[i][j]=INF;
} floyd();
for(int i=1; i<=vN; i++)
cap[i]=k;
int l=0,r=INF;
int ans=0;
while(l<=r)
{
int mid=(l+r)>>1;
if(hungary(mid)==uN) ans=mid,r=mid-1;
else l=mid+1;
}
printf("%d\n",ans);
}
return 0;
} 最大流 #include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <cmath>
#include <map>
#include <set>
#include <stack>
#include <queue>
#include <vector>
#include <bitset> using namespace std; #define LL long long
const int INF = 0x3f3f3f3f;
#define MAXN 500 struct node
{
int u, v, next, cap;
} edge[MAXN*MAXN];
int nt[MAXN], s[MAXN], d[MAXN], visit[MAXN];
int cnt;
int n,m,k;
int mp[MAXN][MAXN];
int N;
void init()
{
cnt = 0;
memset(s, -1, sizeof(s));
} void add(int u, int v, int c)
{
edge[cnt].u = u;
edge[cnt].v = v;
edge[cnt].cap = c;
edge[cnt].next = s[u];
s[u] = cnt++;
edge[cnt].u = v;
edge[cnt].v = u;
edge[cnt].cap = 0;
edge[cnt].next = s[v];
s[v] = cnt++;
} bool BFS(int ss, int ee)
{
memset(d, 0, sizeof d);
d[ss] = 1;
queue<int>q;
q.push(ss);
while (!q.empty())
{
int pre = q.front();
q.pop();
for (int i = s[pre]; ~i; i = edge[i].next)
{
int v = edge[i].v;
if (edge[i].cap > 0 && !d[v])
{
d[v] = d[pre] + 1;
q.push(v);
}
}
}
return d[ee];
} int DFS(int x, int exp, int ee)
{
if (x == ee||!exp) return exp;
int temp,flow=0;
for (int i = nt[x]; ~i ; i = edge[i].next, nt[x] = i)
{
int v = edge[i].v;
if (d[v] == d[x] + 1&&(temp = (DFS(v, min(exp, edge[i].cap), ee))) > 0)
{
edge[i].cap -= temp;
edge[i ^ 1].cap += temp;
flow += temp;
exp -= temp;
if (!exp) break;
}
}
if (!flow) d[x] = 0;
return flow;
} int Dinic_flow(int mid)
{
init();
for(int i=1; i<=n; i++)
add(0,i,k);
for(int i=n+1; i<=N; i++)
add(i,n+1+m,1);
for(int i=1; i<=n; i++)
for(int j=1+n; j<=N; j++)
if(mp[i][j]<=mid)
add(i,j,1);
int ss=0,ee=m+n+1;
int ans = 0;
while (BFS(ss, ee))
{
for (int i = 0; i <=ee; i++) nt[i] = s[i];
ans+= DFS(ss, INF, ee);
}
return ans;
} void floyd()
{
for(int k = 1; k <= N; ++k)
{
for(int i = 1; i <= N; ++i)
{
for(int j = 1; j <= N; ++j)
{
mp[i][j] = min(mp[i][j], mp[i][k] + mp[k][j]);
}
}
}
} int main()
{
while(~scanf("%d%d%d",&n,&m,&k))
{
N=m+n;
int mx=-1;
for(int i=1; i<=N; i++)
for(int j=1; j<=N; j++)
{
scanf("%d",&mp[i][j]);
mx=max(mx,mp[i][j]);
if(mp[i][j]==0)
mp[i][j]=INF;
}
floyd(); int l=0,r=INF;
int ans=0;
while(l<=r)
{
int mid=(l+r)>>1;
if(Dinic_flow(mid)==m) ans=mid,r=mid-1;
else l=mid+1;
}
printf("%d\n",ans);
}
return 0;
}

  

POJ2112 Optimal Milking的更多相关文章

  1. POJ2112 Optimal Milking —— 二分图多重匹配/最大流 + 二分

    题目链接:https://vjudge.net/problem/POJ-2112 Optimal Milking Time Limit: 2000MS   Memory Limit: 30000K T ...

  2. POJ2112 Optimal Milking (网络流)(Dinic)

                                             Optimal Milking Time Limit: 2000MS   Memory Limit: 30000K T ...

  3. POJ2112 Optimal Milking 【最大流+二分】

    Optimal Milking Time Limit: 2000MS   Memory Limit: 30000K Total Submissions: 12482   Accepted: 4508 ...

  4. [USACO2003][poj2112]Optimal Milking(floyd+二分+二分图多重匹配)

    http://poj.org/problem?id=2112 题意: 有K个挤奶器,C头奶牛,每个挤奶器最多能给M头奶牛挤奶. 每个挤奶器和奶牛之间都有一定距离. 求使C头奶牛头奶牛需要走的路程的最大 ...

  5. POJ2112 Optimal Milking(最大流)

    先Floyd求牛到机器最短距离,然后二分枚举最长的边. #include<cstdio> #include<cstring> #include<queue> #in ...

  6. poj2112 Optimal Milking --- 最大流量,二分法

    nx一个挤奶器,ny奶牛,每个挤奶罐为最m奶牛使用. 现在给nx+ny在矩阵之间的距离.要求使所有奶牛挤奶到挤奶正在旅程,最小的个体奶牛步行距离的最大值. 始感觉这个类似二分图匹配,不同之处在于挤奶器 ...

  7. POJ-2112 Optimal Milking(floyd+最大流+二分)

    题目大意: 有k个挤奶器,在牧场里有c头奶牛,每个挤奶器可以满足m个奶牛,奶牛和挤奶器都可以看成是实体,现在给出两个实体之间的距离,如果没有路径相连,则为0,现在问你在所有方案里面,这c头奶牛需要走的 ...

  8. POJ2112:Optimal Milking(Floyd+二分图多重匹配+二分)

    Optimal Milking Time Limit: 2000MS   Memory Limit: 30000K Total Submissions: 20262   Accepted: 7230 ...

  9. Optimal Milking 分类: 图论 POJ 最短路 查找 2015-08-10 10:38 3人阅读 评论(0) 收藏

    Optimal Milking Time Limit: 2000MS Memory Limit: 30000K Total Submissions: 13968 Accepted: 5044 Case ...

随机推荐

  1. json与字符串转换

    一.json转为字符串 JSON.stringify(...) 二.字符串转为json JSON.parse(...)

  2. IDEA 中javadoc插件不能设置的问题

    解决方案 1.手动下载插件 https://github.com/ranzou06/intellij-javadocs/blob/master/intellij-javadocs.zip?raw=tr ...

  3. hdu 4717(三分) The Moving Points

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=4717 n个点,给出初始坐标和移动的速度和移动的方向,求在哪一时刻任意两点之间的距离的最大值的最小. 对于最 ...

  4. Scrapy框架学习笔记

    1.Scrapy简介 Scrapy是用纯Python实现一个为了爬取网站数据.提取结构性数据而编写的应用框架,用途非常广泛. 框架的力量,用户只需要定制开发几个模块就可以轻松的实现一个爬虫,用来抓取网 ...

  5. 09. pt-fingerprint

    vim pt-fingerprint.txt select name, password from user where id=5;select name, password from user wh ...

  6. 神啊!PS是你这样用的吗?

    对于古典油画名作,人们总是持欣赏的态度去观看.能流传至今的作品,也都是当时的名作. 不过,乌克兰艺术家 Alexey Kondakov 却不是这样的,在他手中,那些世界名画也不过是他恶搞的素材罢了. ...

  7. padding属性

    p {padding:2cm 4cm 3cm 4cm;} 属性定义及使用说明 padding简写属性在一个声明中设置所有填充属性.该属性可以有1到4个值. 实例: 填充:10px 5px 15px 2 ...

  8. PostThreadMessage

    PostThreadMessage是一个Windows API函数.其功能是将一个队列消息放入(寄送)到指定线程的消息队列里,不等待线程处理消息就返回.

  9. Python之路(第十九篇)hashlib模块

    一.hashlib模块 HASH Hash,一般翻译做“散列”,也有直接音译为”哈希”的,就是把任意长度的输入(又叫做预映射,pre-image),通过散列算法,变换成固定长度的输出,该输出就是散列值 ...

  10. SWE_Browser编译

    QRD从android4.4开始使用SWE_Browser,android原始代码中不再提供Browser.最近在做一个QRD8916_113517 CMCC入库版本,需要使用SWE_Browser. ...