POJ2112 Optimal Milking
| Time Limit: 2000MS | Memory Limit: 30000K | |
| Total Submissions: 17811 | Accepted: 6368 | |
| Case Time Limit: 1000MS | ||
Description
Each milking point can "process" at most M (1 <= M <= 15) cows each day.
Write a program to find an assignment for each cow to some milking machine so that the distance the furthest-walking cow travels is minimized (and, of course, the milking machines are not overutilized). At least one legal assignment is possible for all input
data sets. Cows can traverse several paths on the way to their milking machine.
Input
* Lines 2.. ...: Each of these K+C lines of K+C space-separated integers describes the distances between pairs of various entities. The input forms a symmetric matrix. Line 2 tells the distances from milking machine 1 to each of the other entities; line 3 tells
the distances from machine 2 to each of the other entities, and so on. Distances of entities directly connected by a path are positive integers no larger than 200. Entities not directly connected by a path have a distance of 0. The distance from an entity
to itself (i.e., all numbers on the diagonal) is also given as 0. To keep the input lines of reasonable length, when K+C > 15, a row is broken into successive lines of 15 numbers and a potentially shorter line to finish up a row. Each new row begins on its
own line.
Output
Sample Input
2 3 2
0 3 2 1 1
3 0 3 2 0
2 3 0 1 0
1 2 1 0 2
1 0 0 2 0
Sample Output
2
Source
——————————————————————————————————
题目给出n头牛和m台机器的两两距离,0表示走不通,和每台机器最多容纳的牛数量,问每头牛都去一台机器,最远的牛到机器的最小距离
思路:先floyd跑出两两之间最短距离,在二分最远距离+二分图多重匹配||最大流验证
二分图多重匹配:
#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <queue>
#include <vector>
#include <set>
#include <stack>
#include <map>
#include <climits>
using namespace std; #define LL long long
const int INF = 0x3f3f3f3f;
const int MAXN=1005;
int uN,vN; //u,v数目
int g[MAXN][MAXN];
int linker[MAXN][MAXN];
bool used[MAXN];
int linknum[MAXN];
int cap[MAXN];
int mp[MAXN][MAXN];
int N; bool dfs(int u,int mid)
{
int v;
for(v=1; v<=vN; v++)
if(mp[u][v]<=mid&&!used[v])
{
used[v]=true;
if(linknum[v]<cap[v])
{
linker[v][++linknum[v]]=u;
return true;
}
for(int i=1; i<=cap[v]; i++)
if(dfs(linker[v][i],mid))
{
linker[v][i]=u;
return true;
}
}
return false;
} int hungary(int mid)
{
int res=0;
int u;
memset(linknum,0,sizeof linknum);
memset(linker,-1,sizeof linker);
for(u=vN+1; u<=N; u++)
{
memset(used,0,sizeof used);
if(dfs(u,mid)) res++;
}
return res;
} void floyd(){
for(int k = 1; k <= N; ++k){
for(int i = 1; i <= N; ++i){
for(int j = 1; j <= N; ++j){
mp[i][j] = min(mp[i][j], mp[i][k] + mp[k][j]);
}
}
}
}
int main()
{
int n,m,k;
while(~scanf("%d%d%d",&vN,&uN,&k))
{
N=uN+vN;
int mx=-1;
for(int i=1; i<=N; i++)
for(int j=1; j<=N; j++)
{
scanf("%d",&mp[i][j]);
mx=max(mx,mp[i][j]);
if(mp[i][j]==0)
mp[i][j]=INF;
} floyd();
for(int i=1; i<=vN; i++)
cap[i]=k;
int l=0,r=INF;
int ans=0;
while(l<=r)
{
int mid=(l+r)>>1;
if(hungary(mid)==uN) ans=mid,r=mid-1;
else l=mid+1;
}
printf("%d\n",ans);
}
return 0;
} 最大流 #include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <cmath>
#include <map>
#include <set>
#include <stack>
#include <queue>
#include <vector>
#include <bitset> using namespace std; #define LL long long
const int INF = 0x3f3f3f3f;
#define MAXN 500 struct node
{
int u, v, next, cap;
} edge[MAXN*MAXN];
int nt[MAXN], s[MAXN], d[MAXN], visit[MAXN];
int cnt;
int n,m,k;
int mp[MAXN][MAXN];
int N;
void init()
{
cnt = 0;
memset(s, -1, sizeof(s));
} void add(int u, int v, int c)
{
edge[cnt].u = u;
edge[cnt].v = v;
edge[cnt].cap = c;
edge[cnt].next = s[u];
s[u] = cnt++;
edge[cnt].u = v;
edge[cnt].v = u;
edge[cnt].cap = 0;
edge[cnt].next = s[v];
s[v] = cnt++;
} bool BFS(int ss, int ee)
{
memset(d, 0, sizeof d);
d[ss] = 1;
queue<int>q;
q.push(ss);
while (!q.empty())
{
int pre = q.front();
q.pop();
for (int i = s[pre]; ~i; i = edge[i].next)
{
int v = edge[i].v;
if (edge[i].cap > 0 && !d[v])
{
d[v] = d[pre] + 1;
q.push(v);
}
}
}
return d[ee];
} int DFS(int x, int exp, int ee)
{
if (x == ee||!exp) return exp;
int temp,flow=0;
for (int i = nt[x]; ~i ; i = edge[i].next, nt[x] = i)
{
int v = edge[i].v;
if (d[v] == d[x] + 1&&(temp = (DFS(v, min(exp, edge[i].cap), ee))) > 0)
{
edge[i].cap -= temp;
edge[i ^ 1].cap += temp;
flow += temp;
exp -= temp;
if (!exp) break;
}
}
if (!flow) d[x] = 0;
return flow;
} int Dinic_flow(int mid)
{
init();
for(int i=1; i<=n; i++)
add(0,i,k);
for(int i=n+1; i<=N; i++)
add(i,n+1+m,1);
for(int i=1; i<=n; i++)
for(int j=1+n; j<=N; j++)
if(mp[i][j]<=mid)
add(i,j,1);
int ss=0,ee=m+n+1;
int ans = 0;
while (BFS(ss, ee))
{
for (int i = 0; i <=ee; i++) nt[i] = s[i];
ans+= DFS(ss, INF, ee);
}
return ans;
} void floyd()
{
for(int k = 1; k <= N; ++k)
{
for(int i = 1; i <= N; ++i)
{
for(int j = 1; j <= N; ++j)
{
mp[i][j] = min(mp[i][j], mp[i][k] + mp[k][j]);
}
}
}
} int main()
{
while(~scanf("%d%d%d",&n,&m,&k))
{
N=m+n;
int mx=-1;
for(int i=1; i<=N; i++)
for(int j=1; j<=N; j++)
{
scanf("%d",&mp[i][j]);
mx=max(mx,mp[i][j]);
if(mp[i][j]==0)
mp[i][j]=INF;
}
floyd(); int l=0,r=INF;
int ans=0;
while(l<=r)
{
int mid=(l+r)>>1;
if(Dinic_flow(mid)==m) ans=mid,r=mid-1;
else l=mid+1;
}
printf("%d\n",ans);
}
return 0;
}
POJ2112 Optimal Milking的更多相关文章
- POJ2112 Optimal Milking —— 二分图多重匹配/最大流 + 二分
题目链接:https://vjudge.net/problem/POJ-2112 Optimal Milking Time Limit: 2000MS Memory Limit: 30000K T ...
- POJ2112 Optimal Milking (网络流)(Dinic)
Optimal Milking Time Limit: 2000MS Memory Limit: 30000K T ...
- POJ2112 Optimal Milking 【最大流+二分】
Optimal Milking Time Limit: 2000MS Memory Limit: 30000K Total Submissions: 12482 Accepted: 4508 ...
- [USACO2003][poj2112]Optimal Milking(floyd+二分+二分图多重匹配)
http://poj.org/problem?id=2112 题意: 有K个挤奶器,C头奶牛,每个挤奶器最多能给M头奶牛挤奶. 每个挤奶器和奶牛之间都有一定距离. 求使C头奶牛头奶牛需要走的路程的最大 ...
- POJ2112 Optimal Milking(最大流)
先Floyd求牛到机器最短距离,然后二分枚举最长的边. #include<cstdio> #include<cstring> #include<queue> #in ...
- poj2112 Optimal Milking --- 最大流量,二分法
nx一个挤奶器,ny奶牛,每个挤奶罐为最m奶牛使用. 现在给nx+ny在矩阵之间的距离.要求使所有奶牛挤奶到挤奶正在旅程,最小的个体奶牛步行距离的最大值. 始感觉这个类似二分图匹配,不同之处在于挤奶器 ...
- POJ-2112 Optimal Milking(floyd+最大流+二分)
题目大意: 有k个挤奶器,在牧场里有c头奶牛,每个挤奶器可以满足m个奶牛,奶牛和挤奶器都可以看成是实体,现在给出两个实体之间的距离,如果没有路径相连,则为0,现在问你在所有方案里面,这c头奶牛需要走的 ...
- POJ2112:Optimal Milking(Floyd+二分图多重匹配+二分)
Optimal Milking Time Limit: 2000MS Memory Limit: 30000K Total Submissions: 20262 Accepted: 7230 ...
- Optimal Milking 分类: 图论 POJ 最短路 查找 2015-08-10 10:38 3人阅读 评论(0) 收藏
Optimal Milking Time Limit: 2000MS Memory Limit: 30000K Total Submissions: 13968 Accepted: 5044 Case ...
随机推荐
- sharpsvn 继续,解决文件locked 问题,
方法中少个方法就会出现一些问题. 比如进行了断线测试,结果再操作时就出现了文件被锁的情况,最终查了官网的论坛,才得以解决 How to unlock if the working copy is lo ...
- PAT 甲级 1023 Have Fun with Numbers(20)(思路分析)
1023 Have Fun with Numbers(20 分) Notice that the number 123456789 is a 9-digit number consisting exa ...
- BZOJ1088或洛谷2327 [SCOI2005]扫雷
BZOJ原题链接 洛谷原题链接 很容易发现答案就只有\(0,1,2\)三种答案,而且只要知道第一个格子是否有雷就可以直接顺推下去了. 所以我们跑一次首位有雷,跑一次首位无雷判断是否可行即可. #inc ...
- MySQL学习笔记-cache 与 buffer
Cache和Buffer是两个不同的概念,简单的说,Cache是加速"读",而 buffer是缓冲"写",前者解决读的问题,保存从磁盘上读出的数据,后者是解决写 ...
- dirname(__FILE__)
- 企业官网Web原型制作分享-Tesla
Tesla是汽车行业知名的奢华品牌,产品为纯电动汽车,知名度极高.此模板正是取自Tesla的官网,高端大图配上文字排版,彰显了汽车的奢华感觉. 本原型由国产Mockplus(原型工具)和iDoc(智能 ...
- web项目目录结构
eclipse web项目目录结构 按照 Java EE 规范的规定,一个典型的 Web 应用程序有四个部分: 1. 公开目录 ; 2. WEB-INF/web.xml 文件,发布描述符(必选) ; ...
- Alpha 冲刺 (3/10)
队名 火箭少男100 组长博客 林燊大哥 作业博客 Alpha 冲鸭鸭鸭! 成员冲刺阶段情况 林燊(组长) 过去两天完成了哪些任务 协调各成员之间的工作 协助后端界面的开发 搭建项目运行的服务器环境 ...
- CRC在线计算工具
http://www.lammertbies.nl/comm/info/crc-calculation.html
- kbmmw 的HTTPSmartService 上传文件到服务器端
前面我写过了 HTTPSmartService 使用介绍,可以参见以前的文章. 前一向有同学问如何在http 页面表单上上传文件.一直没有时间回答,自己简单做了例子, 发现无法实现功能,今天花了一天时 ...