题解

写后缀树真是一写就好久,然后调好久QAQ

我们把两个串取反拼一起建后缀树,这样的话使得后缀树是正串的后缀树

然后我们把询问挂在每个节点上,每次线段树合并,对于大于50的每次暴力跳着在线段树找,对于小于50的建出一棵树来,也就是\(a[i][j]\)表示第\(i\)位往后\(j\)位,向下一个\(a[t][j]\)有\(t >= j\)连一条边

这是一棵树,在树上倍增就行了

说起算法来很容易吧!!!!写起来特别烦QAQ

代码

#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define pdi pair<db,int>
#define mp make_pair
#define pb push_back
#define enter putchar('\n')
#define space putchar(' ')
#define eps 1e-8
#define MAXN 100005
#define mo 974711
//#define ivorysi
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
int N,LA,LB,c[MAXN * 2],Ncnt,F = 50;
int64 K;
char A[MAXN],B[MAXN];
int fa[MAXN * 4][19],up[MAXN * 4][19];
struct node {
int cnt,len;
node *nxt[26],*par;
}pool[MAXN * 4],*tail = pool,*root,*last,*que[MAXN * 4];
vector<pii > son[MAXN * 4];
vector<int> sm[MAXN * 4];
int ed[MAXN * 4],posA[MAXN],posB[MAXN],dis[MAXN * 4];
int64 ans[MAXN],sum[MAXN * 4][19];
struct qry_node {
int s,t,len,id;
friend bool operator < (const qry_node &a,const qry_node &b) {
return a.len < b.len;
}
};
vector<qry_node> Qry[MAXN * 4];
namespace segtr {
struct node {
int minv,lc,rc;
}tr[MAXN * 20];
int Ncnt = 0,rt[MAXN * 4];
#define LC(u) tr[u].lc
#define RC(u) tr[u].rc
#define MIN(u) tr[u].minv
void update(int u) {
MIN(u) = LA + 1;
if(LC(u)) {
MIN(u) = min(MIN(u),MIN(LC(u)));
}
if(RC(u)) {
MIN(u) = min(MIN(u),MIN(RC(u)));
}
}
void Insert(int &u,int L,int R,int v) {
if(!u) u = ++Ncnt;
if(L == R) {MIN(u) = v;return;}
int mid = (L + R) >> 1;
if(v <= mid) Insert(LC(u),L,mid,v);
else Insert(RC(u),mid + 1,R,v);
update(u);
}
int Merge(int u,int v) {
if(!u) return v;
if(!v) return u;
LC(u) = Merge(LC(u),LC(v));
RC(u) = Merge(RC(u),RC(v));
update(u);
return u;
}
int Query(int u,int L,int R,int p) {
if(!u) return LA + 1;
if(L >= p) return MIN(u);
int mid = (L + R) >> 1;
if(p <= mid) return min(Query(LC(u),L,mid,p),MIN(RC(u)) != 0 ? MIN(RC(u)) : LA + 1);
else return Query(RC(u),mid + 1,R,p);
}
}
using segtr::rt;
using segtr::Insert;
using segtr::Merge;
using segtr::Query;
void build_SAM(int c,int len) {
node *nowp = tail++,*p;
nowp->len = len;nowp->cnt = 1;
for(p = last ; p && !p->nxt[c] ; p = p->par) {
p->nxt[c] = nowp;
}
if(!p) nowp->par = root;
else {
node *q = p->nxt[c];
if(q->len == p->len + 1) nowp->par = q;
else {
node *copyq = tail++;
*copyq = *q;copyq->cnt = 0;copyq->len = p->len + 1;
q->par = nowp->par = copyq;
for(; p && p->nxt[c] == q ; p = p->par) {
p->nxt[c] = copyq;
}
}
}
last = nowp;
}
void build_SuffixTree() {
int m = tail - pool;
Ncnt = m;
for(int i = 0 ; i < m ; ++i) {
c[pool[i].len]++;
}
for(int i = 1 ; i <= LA + LB ; ++i) c[i] += c[i - 1];
for(int i = 0 ; i < m ; ++i) {
que[c[pool[i].len]--] = &pool[i];
}
for(int i = 1 ; i <= m ; ++i) {
int f = que[i]->par - pool + 1;
}
for(int i = m ; i > 1 ; --i) {
int u = que[i] - pool + 1;
int f = que[i]->par - pool + 1;
fa[u][0] = f;
son[f].pb(mp(u,que[i]->len - que[i]->par->len));
if(que[i]->cnt) {
if(que[i]->len <= LA) {
ed[u] = LA - que[i]->len + 1;
posA[LA - que[i]->len + 1] = u;
}
else posB[LB - (que[i]->len - LA) + 1] = u;
}
}
}
void dfs(int u) {
int s = son[u].size();
for(int i = 0 ; i < s ; ++i) {
dis[son[u][i].fi] = dis[u] + son[u][i].se;
dfs(son[u][i].fi);
}
}
void Process(int u) {
int s = son[u].size(),t;
for(int i = 0 ; i < s ; ++i) {
Process(son[u][i].fi);
rt[u] = Merge(rt[u],rt[son[u][i].fi]);
}
if(ed[u]) Insert(rt[u],1,LA,ed[u]);
sort(Qry[u].begin(),Qry[u].end());
if(sm[u].size()) sort(sm[u].begin(),sm[u].end());
s = Qry[u].size(),t = sm[u].size();
for(int i = 0 ; i < s ; ++i) {
if((i == 0 || Qry[u][i].len != Qry[u][i - 1].len) && Qry[u][i].len <= F) {
int r = 0;
for(int j = 0 ; j < t ; ++j) {
while(r < t && sm[u][r] - sm[u][j] < Qry[u][i].len) ++r;
sum[sm[u][j]][0] = 0;
if(r >= t) up[sm[u][j]][0] = 0;
else {up[sm[u][j]][0] = sm[u][r];sum[sm[u][j]][0] = sm[u][r];}
}
for(int k = 1 ; k <= 18 ; ++k) {
for(int j = 0 ; j < t ; ++j) {
up[sm[u][j]][k] = up[up[sm[u][j]][k - 1]][k - 1];
sum[sm[u][j]][k] = sum[sm[u][j]][k - 1] + sum[up[sm[u][j]][k - 1]][k - 1];
}
}
}
if(Qry[u][i].len <= F) {
int h = Query(rt[u],1,LA,Qry[u][i].s);
if(h + Qry[u][i].len - 1 <= Qry[u][i].t) {
ans[Qry[u][i].id] += K - h;
for(int k = 18 ; k >= 0 ; --k) {
if(up[h][k]) {
if(up[h][k] + Qry[u][i].len - 1 <= Qry[u][i].t) {
ans[Qry[u][i].id] += K * (1 << k) - sum[h][k];
h = up[h][k];
}
}
}
}
}
else {
int h,le = Qry[u][i].s;
while(1) {
h = Query(rt[u],1,LA,le);
if(h + Qry[u][i].len - 1 <= Qry[u][i].t) {
ans[Qry[u][i].id] += K - h;
le = h + Qry[u][i].len;
}
else break;
}
}
}
}
void Solve() {
read(N);read(K);
root = last = tail++;
scanf("%s",A + 1);scanf("%s",B + 1);
LA = strlen(A + 1);LB = strlen(B + 1);
int tot = 0;
for(int i = LA ; i >= 1 ; --i) {
build_SAM(A[i] - 'a',++tot);
}
for(int i = LB ; i >= 1 ; --i) {
build_SAM(B[i] - 'a',++tot);
}
build_SuffixTree();
for(int j = 1 ; j <= 18 ; ++j) {
for(int i = 1 ; i <= Ncnt ; ++i) {
fa[i][j] = fa[fa[i][j - 1]][j - 1];
}
}
int s,t,l,r,q;
dfs(1);
read(q);
for(int i = 1 ; i <= q ; ++i) {
read(s);read(t);read(l);read(r);
int h = posB[l];
for(int j = 18 ; j >= 0 ; --j) {
if(dis[fa[h][j]] >= (r - l + 1)) h = fa[h][j];
}
Qry[h].pb((qry_node){s,t,r - l + 1,i});
}
for(int i = 1 ; i <= LA ; ++i) {
int t = posA[i];
for(int j = 18 ; j >= 0 ; --j) {
if(dis[fa[t][j]] >= F) t = fa[t][j];
}
while(t) {
sm[t].pb(i);
t = fa[t][0];
}
}
Process(1);
for(int i = 1 ; i <= q ; ++i) {
out(ans[i]);enter;
}
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Solve();
}

【LOJ】#2525. 「HAOI2018」字串覆盖的更多相关文章

  1. 「HAOI2018」字串覆盖

    「HAOI2018」字串覆盖 题意: ​ 给你两个字符串,长度都为\(N\),以及一个参数\(K\),有\(M\)个询问,每次给你一个\(B\)串的一个子串,问用这个字串去覆盖\(A\)串一段区间的最 ...

  2. loj#2128. 「HAOI2015」数字串拆分 矩阵乘法

    目录 题目链接 题解 代码 题目链接 loj#2128. 「HAOI2015」数字串拆分 题解 \(f(s)\)对于\(f(i) = \sum_{j = i - m}^{i - 1}f(j)\) 这个 ...

  3. 「NOIP2002」「Codevs1099」 字串变换(BFS

    1099 字串变换 2002年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold   题目描述 Description 已知有两个字串 $A$, ...

  4. 【BZOJ5304】[HAOI2018]字串覆盖(后缀数组,主席树,倍增)

    [BZOJ5304][HAOI2018]字串覆盖(后缀数组,主席树,倍增) 题面 BZOJ 洛谷 题解 贪心的想法是从左往右,能选就选.这个显然是正确的. 题目的数据范围很好的说明了要对于询问分开进行 ...

  5. loj#2574. 「TJOI2018」智力竞赛 (路径覆盖)

    目录 题目链接 题解 代码 题目链接 loj#2574. 「TJOI2018」智力竞赛 题解 就是求可重路径覆盖之后最大化剩余点的最小权值 二分答案后就是一个可重复路径覆盖 处理出可达点做二分图匹配就 ...

  6. Loj #3055. 「HNOI2019」JOJO

    Loj #3055. 「HNOI2019」JOJO JOJO 的奇幻冒险是一部非常火的漫画.漫画中的男主角经常喜欢连续喊很多的「欧拉」或者「木大」. 为了防止字太多挡住漫画内容,现在打算在新的漫画中用 ...

  7. Loj #3089. 「BJOI2019」奥术神杖

    Loj #3089. 「BJOI2019」奥术神杖 题目描述 Bezorath 大陆抵抗地灾军团入侵的战争进入了僵持的阶段,世世代代生活在 Bezorath 这片大陆的精灵们开始寻找远古时代诸神遗留的 ...

  8. Loj #3057. 「HNOI2019」校园旅行

    Loj #3057. 「HNOI2019」校园旅行 某学校的每个建筑都有一个独特的编号.一天你在校园里无聊,决定在校园内随意地漫步. 你已经在校园里呆过一段时间,对校园内每个建筑的编号非常熟悉,于是你 ...

  9. LOJ #6436. 「PKUSC2018」神仙的游戏(字符串+NTT)

    题面 LOJ #6436. 「PKUSC2018」神仙的游戏 题解 参考 yyb 的口中的长郡最强选手 租酥雨大佬的博客 ... 一开始以为 通配符匹配 就是类似于 BZOJ 4259: 残缺的字符串 ...

随机推荐

  1. MT【95】由参数前系数凑配系数题2

    提示:都是看$a,b$前的系数做的$a=4/3,b=2/3;a+b=\le2$,一样的可以求得$a+b$的最小值-1,当$b=\frac{1}{3},a=\frac{-4}{3}$时取到等号.此题是清 ...

  2. 【ZJOI2015】诸神眷顾的幻想乡 解题报告

    [ZJOI2015]诸神眷顾的幻想乡 Description 幽香是全幻想乡里最受人欢迎的萌妹子,这天,是幽香的2600岁生日,无数幽香的粉丝到了幽香家门前的太阳花田上来为幽香庆祝生日. 粉丝们非常热 ...

  3. Java 使用 Enum 实现单例模式

    在这篇文章中介绍了单例模式有五种写法:懒汉.饿汉.双重检验锁.静态内部类.枚举.如果涉及到反序列化创建对象时推荐使用枚举的方式来实现单例,因为Enum能防止反序列化时重新创建新的对象.本文介绍 Enu ...

  4. 71. Simplify Path(M)

    71. Simplify Path Given an absolute path for a file (Unix-style), simplify it. For example, path = & ...

  5. 24. Swap Nodes in Pairs(M);25. Reverse Nodes in k-Group(H)

    24. Swap Nodes in Pairs Given a linked list, swap every two adjacent nodes and return its head. For ...

  6. linux命令总结之echo命令

    echo是一种最常用的与广泛使用的内置于Linux的bash和C shell的命令,通常用在脚本语言和批处理文件中来在标准输出或者文件中显示一行文本或者字符串. echo命令的语法是: echo [选 ...

  7. java精确除法运算(BigDecimal)

    除法运算的函数定义如下 BigDecimal.divide(BigDecimal divisor, int scale, RoundingMode roundingMode) ; scale为小数位数 ...

  8. 何凯文每日一句打卡||DAY12

  9. Webx示例-PetStore分析1

    1. 下载源码 2. 启动容器,加载组件--WebxContextLoaderListener WebxContextLoaderListener继承自org.springframework.web. ...

  10. 【转】用CornerStone配置SVN,HTTP及svn简单使用说明

    已经安装了的小伙伴请直接看三步骤 一.下载地址 CornerStoneV2.6:http://pan.baidu.com/s/1qWEsEbM密码:www.macx.cn 二.安装破解方法 1.安装之 ...