本文转载自Differences between Stack and Heap

Stack vs Heap

So far we have seen how to declare basic type variables such as int, double, etc, and complex types such as arrays and structs. The way we have been declaring them so far, with a syntax that is like other languages such as MATLAB, Python, etc, puts these variables on the stack in C.

The Stack

What is the stack? It's a special region of your computer's memory that stores temporary variables created by each function (including the main() function). The stack is a "LIFO" (last in, first out) data structure, that is managed and optimized by the CPU quite closely. Every time a function declares a new variable, it is "pushed" onto the stack. Then every time a function exits, all of the variables pushed onto the stack by that function, are freed (that is to say, they are deleted). Once a stack variable is freed, that region of memory becomes available for other stack variables.

The advantage of using the stack to store variables, is that memory is managed for you. You don't have to allocate memory by hand, or free it once you don't need it any more. What's more, because the CPU organizes stack memory so efficiently, reading from and writing to stack variables is very fast.

A key to understanding the stack is the notion that when a function exits, all of its variables are popped off of the stack (and hence lost forever). Thus stack variables are local in nature. This is related to a concept we saw earlier known as variable scope, or local vs global variables. A common bug in C programming is attempting to access a variable that was created on the stack inside some function, from a place in your program outside of that function (i.e. after that function has exited).

Another feature of the stack to keep in mind, is that there is a limit (varies with OS) on the size of variables that can be stored on the stack. This is not the case for variables allocated on the heap.

To summarize the stack:

  • the stack grows and shrinks as functions push and pop local variables
  • there is no need to manage the memory yourself, variables are allocated and freed automatically
  • the stack has size limits
  • stack variables only exist while the function that created them, is running

The Heap

The heap is a region of your computer's memory that is not managed automatically for you, and is not as tightly managed by the CPU. It is a more free-floating region of memory (and is larger). To allocate memory on the heap, you must use malloc() or calloc(), which are built-in C functions. Once you have allocated memory on the heap, you are responsible for using free() to deallocate that memory once you don't need it any more. If you fail to do this, your program will have what is known as a memory leak. That is, memory on the heap will still be set aside (and won't be available to other processes). As we will see in the debugging section, there is a tool called valgrind that can help you detect memory leaks.

Unlike the stack, the heap does not have size restrictions on variable size (apart from the obvious physical limitations of your computer). Heap memory is slightly slower to be read from and written to, because one has to use pointers to access memory on the heap. We will talk about pointers shortly.

Unlike the stack, variables created on the heap are accessible by any function, anywhere in your program. Heap variables are essentially global in scope.

Stack vs Heap Pros and Cons

Stack

  • very fast access
  • don't have to explicitly de-allocate variables
  • space is managed efficiently by CPU, memory will not become fragmented
  • local variables only
  • limit on stack size (OS-dependent)
  • variables cannot be resized

Heap

  • variables can be accessed globally
  • no limit on memory size
  • (relatively) slower access
  • no guaranteed efficient use of space, memory may become fragmented over time as blocks of memory are allocated, then freed
  • you must manage memory (you're in charge of allocating and freeing variables)
  • variables can be resized using realloc()

Examples

Here is a short program that creates its variables on the stack. It looks like the other programs we have seen so far.

#include <stdio.h>

double multiplyByTwo (double input) {
double twice = input * 2.0;
return twice;
} int main (int argc, char *argv[])
{
int age = 30;
double salary = 12345.67;
double myList[3] = {1.2, 2.3, 3.4}; printf("double your salary is %.3f\n", multiplyByTwo(salary)); return 0;
}
double your salary is 24691.340

On lines 10, 11 and 12 we declare variables: an int, a double, and an array of three doubles. These three variables are pushed onto the stack as soon as the main() function allocates them. When the main() function exits (and the program stops) these variables are popped off of the stack. Similarly, in the function multiplyByTwo(), the twice variable, which is a double, is pushed onto the stack as soon as the multiplyByTwo() function allocates it. As soon as the multiplyByTwo() function exits, the twice variable is popped off of the stack, and is gone forever.

As a side note, there is a way to tell C to keep a stack variable around, even after its creator function exits, and that is to use the static keyword when declaring the variable. A variable declared with the static keyword thus becomes something like a global variable, but one that is only visible inside the function that created it. It's a strange construction, one that you probably won't need except under very specific circumstances.

Here is another version of this program that allocates all of its variables on the heap instead of the stack:

#include <stdio.h>
#include <stdlib.h> double *multiplyByTwo (double *input) {
double *twice = malloc(sizeof(double));
*twice = *input * 2.0;
return twice;
} int main (int argc, char *argv[])
{
int *age = malloc(sizeof(int));
*age = 30;
double *salary = malloc(sizeof(double));
*salary = 12345.67;
double *myList = malloc(3 * sizeof(double));
myList[0] = 1.2;
myList[1] = 2.3;
myList[2] = 3.4; double *twiceSalary = multiplyByTwo(salary); printf("double your salary is %.3f\n", *twiceSalary); free(age);
free(salary);
free(myList);
free(twiceSalary); return 0;
}

As you can see, using malloc() to allocate memory on the heap and then using free() to deallocate it, is no big deal, but is a bit cumbersome. The other thing to notice is that there are a bunch of star symbols * all over the place now. What are those? The answer is, they are pointers. The malloc() (and calloc() and free()) functions deal with pointers not actual values. We will talk more about pointers shortly. The bottom line though: pointers are a special data type in C that store addresses in memory instead of storing actual values. Thus on line 5 above, the twice variable is not a double, but is a pointer to a double. It's an address in memory where the double is stored.

When to use the Heap?

When should you use the heap, and when should you use the stack? If you need to allocate a large block of memory (e.g. a large array, or a big struct), and you need to keep that variable around a long time (like a global), then you should allocate it on the heap. If you are dealing with relatively small variables that only need to persist as long as the function using them is alive, then you should use the stack, it's easier and faster. If you need variables like arrays and structs that can change size dynamically (e.g. arrays that can grow or shrink as needed) then you will likely need to allocate them on the heap, and use dynamic memory allocation functions like malloc(), calloc(), realloc() and free() to manage that memory "by hand". We will talk about dynamically allocated data structures after we talk about pointers.

Reference

What and where are the stack and heap?

Differences between Stack and Heap的更多相关文章

  1. 堆栈 & Stack and Heap

    What's the difference between a stack and a heap? The differences between the stack and the heap can ...

  2. 【转】JVM运行原理及JVM中的Stack和Heap的实现过程

    来自: http://blog.csdn.net//u011067360/article/details/46047521 Java语言写的源程序通过Java编译器,编译成与平台无关的‘字节码程序’( ...

  3. 图解.NET Stack和Heap的本质区别

    现在越来越觉得对.NET基本概念的理解和掌握对于提升编程水平的重要性,先从.NET的 Stack(栈)和Heap(堆)说起,计算机的内存可以分为代码块内存,stack内存和heap内存.代码块内存是在 ...

  4. JVM的stack和heap,JVM内存模型,垃圾回收策略,分代收集,增量收集

    (转自:http://my.oschina.net/u/436879/blog/85478) 在JVM中,内存分为两个部分,Stack(栈)和Heap(堆),这里,我们从JVM的内存管理原理的角度来认 ...

  5. JVM运行原理及Stack和Heap的实现过程

    Java语言写的源程序通过Java编译器,编译成与平台无关的‘字节码程序’(.class文件,也就是0,1二进制程序),然后在OS之上的Java解释器中解释执行,而JVM是java的核心和基础,在ja ...

  6. Java虚拟机:JVM中的Stack和Heap

    简单的了解一下JVM中的栈和堆 在JVM中,内存分为两个部分,Stack(栈)和Heap(堆),这里,我们从JVM的内存管理原理的角度来认识Stack和Heap,并通过这些原理认清Java中静态方法和 ...

  7. 深入Java虚拟机:JVM中的Stack和Heap

    在JVM中,内存分为两个部分,Stack(栈)和Heap(堆),这里,我们从JVM的内存管理原理的角度来认识Stack和Heap,并通过这些原理认清Java中静态方法和静态属性的问题. 一般,JVM的 ...

  8. Mastering stack and heap for system reliability

    http://www.iar.com/Global/Resources/Developers_Toolbox/Building_and_debugging/Mastering_stack_and_he ...

  9. Stack vs Heap

    http://gribblelab.org/CBootcamp/7_Memory_Stack_vs_Heap.html Table of Contents Stack vs Heap The Stac ...

随机推荐

  1. vulnhub靶场之AI-WEB1.0渗透记录

    在本机电脑上自行搭建了一个练手的靶场,下面是记录渗透过程 目录 一.确认靶机ip 二.端口&目录扫描 三.查看敏感目录 四.sql注入 五.get shell 六.系统提权 确认靶机ip ka ...

  2. mysql修改最大连接数

    root@localhost ~]# nano /etc/my.cnf编辑my.cnf在[mysqld]中加入:set-variable=max_connections=1000 更改 MySQL 在 ...

  3. (14)Linux绝对路径和相对路径

    Linux 系统中,文件是存放在目录中的,而目录又可以存放在其他的目录中,因此,用户(或程序)可以借助文件名和目录名,从文件树中的任何地方开始,搜寻并定位所需的目录或文件. 说明目录或文件名位置的方法 ...

  4. Java并发包源码学习系列:阻塞队列实现之LinkedBlockingDeque源码解析

    目录 LinkedBlockingDeque概述 类图结构及重要字段 linkFirst linkLast unlinkFirst unlinkLast unlink 总结 参考阅读 系列传送门: J ...

  5. Flink-v1.12官方网站翻译-P016-Flink DataStream API Programming Guide

    Flink DataStream API编程指南 Flink中的DataStream程序是对数据流实现转换的常规程序(如过滤.更新状态.定义窗口.聚合).数据流最初是由各种来源(如消息队列.套接字流. ...

  6. 一文弄懂-BIO,NIO,AIO

    目录 一文弄懂-BIO,NIO,AIO 1. BIO: 同步阻塞IO模型 2. NIO: 同步非阻塞IO模型(多路复用) 3.Epoll函数详解 4.Redis线程模型 5. AIO: 异步非阻塞IO ...

  7. Codeforces Round #673 (Div. 2) C. k-Amazing Numbers(思维)

    题目链接:https://codeforces.com/contest/1417/problem/C 题意 给出一个大小为 $n$ 的数组 $a$,计算当 $k$ 从 $1$ 到 $n$ 取值时在所有 ...

  8. fiddler抓包+安卓机 完成手机app抓包的配置 遇到的一些问题

    fiddler抓包+安卓模拟器完成手机app抓包的配置:fiddler抓包+雷电模拟器 完成手机app抓包的配置 其实在安卓真机上弄比在虚拟机上弄更麻烦一点,它们的步骤都差不多一样,就是在安卓真机上弄 ...

  9. Codeforces Round #582 (Div. 3) A. Chips Moving

    传送门 题解: 给你n个数的坐标,你需要把他们移动到一个位置,有两种移动方式 1.向左或者右移动2 2.向左或者右移动1,但是耗费1 求最小耗费 题解: 很简单就可以想到,看一下偶数坐标多还是奇数坐标 ...

  10. 01.原生态jdbc程序中问题总结

    1.数据库启动包配置到工程目录中(mysql5.1) mysql-connector-java-5.1.7-bin.jar 2.jdbc原生态操作数据库(程序) 操作mysql数据库 1 packag ...