本文转载自Differences between Stack and Heap

Stack vs Heap

So far we have seen how to declare basic type variables such as int, double, etc, and complex types such as arrays and structs. The way we have been declaring them so far, with a syntax that is like other languages such as MATLAB, Python, etc, puts these variables on the stack in C.

The Stack

What is the stack? It's a special region of your computer's memory that stores temporary variables created by each function (including the main() function). The stack is a "LIFO" (last in, first out) data structure, that is managed and optimized by the CPU quite closely. Every time a function declares a new variable, it is "pushed" onto the stack. Then every time a function exits, all of the variables pushed onto the stack by that function, are freed (that is to say, they are deleted). Once a stack variable is freed, that region of memory becomes available for other stack variables.

The advantage of using the stack to store variables, is that memory is managed for you. You don't have to allocate memory by hand, or free it once you don't need it any more. What's more, because the CPU organizes stack memory so efficiently, reading from and writing to stack variables is very fast.

A key to understanding the stack is the notion that when a function exits, all of its variables are popped off of the stack (and hence lost forever). Thus stack variables are local in nature. This is related to a concept we saw earlier known as variable scope, or local vs global variables. A common bug in C programming is attempting to access a variable that was created on the stack inside some function, from a place in your program outside of that function (i.e. after that function has exited).

Another feature of the stack to keep in mind, is that there is a limit (varies with OS) on the size of variables that can be stored on the stack. This is not the case for variables allocated on the heap.

To summarize the stack:

  • the stack grows and shrinks as functions push and pop local variables
  • there is no need to manage the memory yourself, variables are allocated and freed automatically
  • the stack has size limits
  • stack variables only exist while the function that created them, is running

The Heap

The heap is a region of your computer's memory that is not managed automatically for you, and is not as tightly managed by the CPU. It is a more free-floating region of memory (and is larger). To allocate memory on the heap, you must use malloc() or calloc(), which are built-in C functions. Once you have allocated memory on the heap, you are responsible for using free() to deallocate that memory once you don't need it any more. If you fail to do this, your program will have what is known as a memory leak. That is, memory on the heap will still be set aside (and won't be available to other processes). As we will see in the debugging section, there is a tool called valgrind that can help you detect memory leaks.

Unlike the stack, the heap does not have size restrictions on variable size (apart from the obvious physical limitations of your computer). Heap memory is slightly slower to be read from and written to, because one has to use pointers to access memory on the heap. We will talk about pointers shortly.

Unlike the stack, variables created on the heap are accessible by any function, anywhere in your program. Heap variables are essentially global in scope.

Stack vs Heap Pros and Cons

Stack

  • very fast access
  • don't have to explicitly de-allocate variables
  • space is managed efficiently by CPU, memory will not become fragmented
  • local variables only
  • limit on stack size (OS-dependent)
  • variables cannot be resized

Heap

  • variables can be accessed globally
  • no limit on memory size
  • (relatively) slower access
  • no guaranteed efficient use of space, memory may become fragmented over time as blocks of memory are allocated, then freed
  • you must manage memory (you're in charge of allocating and freeing variables)
  • variables can be resized using realloc()

Examples

Here is a short program that creates its variables on the stack. It looks like the other programs we have seen so far.

#include <stdio.h>

double multiplyByTwo (double input) {
double twice = input * 2.0;
return twice;
} int main (int argc, char *argv[])
{
int age = 30;
double salary = 12345.67;
double myList[3] = {1.2, 2.3, 3.4}; printf("double your salary is %.3f\n", multiplyByTwo(salary)); return 0;
}
double your salary is 24691.340

On lines 10, 11 and 12 we declare variables: an int, a double, and an array of three doubles. These three variables are pushed onto the stack as soon as the main() function allocates them. When the main() function exits (and the program stops) these variables are popped off of the stack. Similarly, in the function multiplyByTwo(), the twice variable, which is a double, is pushed onto the stack as soon as the multiplyByTwo() function allocates it. As soon as the multiplyByTwo() function exits, the twice variable is popped off of the stack, and is gone forever.

As a side note, there is a way to tell C to keep a stack variable around, even after its creator function exits, and that is to use the static keyword when declaring the variable. A variable declared with the static keyword thus becomes something like a global variable, but one that is only visible inside the function that created it. It's a strange construction, one that you probably won't need except under very specific circumstances.

Here is another version of this program that allocates all of its variables on the heap instead of the stack:

#include <stdio.h>
#include <stdlib.h> double *multiplyByTwo (double *input) {
double *twice = malloc(sizeof(double));
*twice = *input * 2.0;
return twice;
} int main (int argc, char *argv[])
{
int *age = malloc(sizeof(int));
*age = 30;
double *salary = malloc(sizeof(double));
*salary = 12345.67;
double *myList = malloc(3 * sizeof(double));
myList[0] = 1.2;
myList[1] = 2.3;
myList[2] = 3.4; double *twiceSalary = multiplyByTwo(salary); printf("double your salary is %.3f\n", *twiceSalary); free(age);
free(salary);
free(myList);
free(twiceSalary); return 0;
}

As you can see, using malloc() to allocate memory on the heap and then using free() to deallocate it, is no big deal, but is a bit cumbersome. The other thing to notice is that there are a bunch of star symbols * all over the place now. What are those? The answer is, they are pointers. The malloc() (and calloc() and free()) functions deal with pointers not actual values. We will talk more about pointers shortly. The bottom line though: pointers are a special data type in C that store addresses in memory instead of storing actual values. Thus on line 5 above, the twice variable is not a double, but is a pointer to a double. It's an address in memory where the double is stored.

When to use the Heap?

When should you use the heap, and when should you use the stack? If you need to allocate a large block of memory (e.g. a large array, or a big struct), and you need to keep that variable around a long time (like a global), then you should allocate it on the heap. If you are dealing with relatively small variables that only need to persist as long as the function using them is alive, then you should use the stack, it's easier and faster. If you need variables like arrays and structs that can change size dynamically (e.g. arrays that can grow or shrink as needed) then you will likely need to allocate them on the heap, and use dynamic memory allocation functions like malloc(), calloc(), realloc() and free() to manage that memory "by hand". We will talk about dynamically allocated data structures after we talk about pointers.

Reference

What and where are the stack and heap?

Differences between Stack and Heap的更多相关文章

  1. 堆栈 & Stack and Heap

    What's the difference between a stack and a heap? The differences between the stack and the heap can ...

  2. 【转】JVM运行原理及JVM中的Stack和Heap的实现过程

    来自: http://blog.csdn.net//u011067360/article/details/46047521 Java语言写的源程序通过Java编译器,编译成与平台无关的‘字节码程序’( ...

  3. 图解.NET Stack和Heap的本质区别

    现在越来越觉得对.NET基本概念的理解和掌握对于提升编程水平的重要性,先从.NET的 Stack(栈)和Heap(堆)说起,计算机的内存可以分为代码块内存,stack内存和heap内存.代码块内存是在 ...

  4. JVM的stack和heap,JVM内存模型,垃圾回收策略,分代收集,增量收集

    (转自:http://my.oschina.net/u/436879/blog/85478) 在JVM中,内存分为两个部分,Stack(栈)和Heap(堆),这里,我们从JVM的内存管理原理的角度来认 ...

  5. JVM运行原理及Stack和Heap的实现过程

    Java语言写的源程序通过Java编译器,编译成与平台无关的‘字节码程序’(.class文件,也就是0,1二进制程序),然后在OS之上的Java解释器中解释执行,而JVM是java的核心和基础,在ja ...

  6. Java虚拟机:JVM中的Stack和Heap

    简单的了解一下JVM中的栈和堆 在JVM中,内存分为两个部分,Stack(栈)和Heap(堆),这里,我们从JVM的内存管理原理的角度来认识Stack和Heap,并通过这些原理认清Java中静态方法和 ...

  7. 深入Java虚拟机:JVM中的Stack和Heap

    在JVM中,内存分为两个部分,Stack(栈)和Heap(堆),这里,我们从JVM的内存管理原理的角度来认识Stack和Heap,并通过这些原理认清Java中静态方法和静态属性的问题. 一般,JVM的 ...

  8. Mastering stack and heap for system reliability

    http://www.iar.com/Global/Resources/Developers_Toolbox/Building_and_debugging/Mastering_stack_and_he ...

  9. Stack vs Heap

    http://gribblelab.org/CBootcamp/7_Memory_Stack_vs_Heap.html Table of Contents Stack vs Heap The Stac ...

随机推荐

  1. Web信息收集之搜索引擎-Shodan Hacking

    Web信息收集之搜索引擎-Shodan Hacking 一.Shodan Hacking简介 1.1 ip 1.2 Service/protocol 1.3 Keyword 1.4 Cuuntry 1 ...

  2. GeoMesa命令行,索引概述

    GeoMesa 一.GeoMesa命令行 查看classpath 创建表 描述表 批量导入数据 解释查询 统计分析 导出feature 删除feature 获取目录中的全部表的名称 删除表 删除目录 ...

  3. C++泛型基础学习

    转载http://blog.csdn.net/xinzheng_wang/article/details/6674847 泛型的基本思想:泛型编程(Generic Programming)是一种语言机 ...

  4. C++类基本--随笔一

    #include <iostream> using namespace std; class Teacher { public: Teacher(int m=3,int n=2) { a= ...

  5. Docker -- 日志

    docker 的两总日志 引擎日志 容器日志 引擎日志 简介: Docker 引擎日志就是 dockerd 运行时的日志 在CentOS 7系统中,Docker 引擎日志一般是交给 systemd来管 ...

  6. python--基础3(流程语句)

    资源池 链接:https://pan.baidu.com/s/1OGq0GaVcAuYEk4F71v0RWw 提取码:h2sd 本章内容: if判断语句 for循环语句 while循环语句 break ...

  7. 13.Linux文件存储系统

    1.Linux 系统中的文件存储结构 Linux系统中常见的目录名称以及相应内容 2.系统内核中的udev 设备管理器会自动把硬件名称规范起来,目的是让用户通过设备文件的名字可以猜出设备大致的属性以及 ...

  8. 用hyper-v创建虚拟机

    1.新建虚拟机 1) 2) 3) 4)一般情况:linux选择第一代,Windows选择第二代 5) 6) 7) 8) 9) 10) 11)网卡设置:如果虚拟机和宿主机公用一块网卡,那么VLAN ID ...

  9. 关于base64编码Encode和Decode编码的几种方式--Java

    Base64是一种能将任意Binary资料用64种字元组合成字串的方法,而这个Binary资料和字串资料彼此之间是可以互相转换的,十分方便.在实际应用上,Base64除了能将Binary资料可视化之外 ...

  10. CF-1332 F. Independent Set

    F. Independent Set 题意 一颗 n 个节点的树,求出每个\(edge-induced~subgraph\)的独立集个数之和. \(edge-induced~subgraph\)含义是 ...