参数化问题
  在SLAM的建图过程中,把像素深度假设成了高斯分布。那么这么假设是否是合适的呢?这里关系到一个参数化的问题。

  我们经常用一个点的世界坐标x,y,z三个量来描述它,这是一种参数化形式。我们认为x,y,z三个量都是随机的,它们服从三维的高斯分布。然而,在极线搜索中使用了图像坐标u,v和深度值d来描述某个空间点(即稠密建图)。我们认为u,v不动,而d服从(一维的)高斯分布,这是另一种参数化形式。那么这两种参数化形式有什么不同吗?我们是否也能假设u,v服从高斯分布,从而形成另一种参数数化形式呢?

  不同的参数化形式,实际都描述了同一个量,也就是某个三维空间点。考虑到我们在相机看到某个点时,它的图像坐标u,v是比较确定的(u,v的不确定性取决于图像的分辨率)而深度值d则是非常不确定的。此时,若用世界坐标x,y,z描述这个点,那么根据相机当前的位姿,x,y,z三个量之间可能存在明显的相关性。反映在协方差矩阵中,表现为非对角元素不为零。而如果用u,v,d参数化一个点,那么它的u,v和d至少是近似独立的,甚至我们还能认为u,v也是独立的----从而它的协方差矩阵近似值为对角阵,更为简洁。

逆深度
  逆深度(Inverse depth)是近年来SLAM研究中出现的一种广泛使用的参数化技巧。在极线搜索和块匹配中,我们假设深度值满足高斯分布。然而仔细想想会发现,深度的正态分布确实存在一些问题:

1.实际想表达的是:这个场景深度大概是5-10米,可能有一些更远的点,但近处肯定不会小于相机焦距(或者认为深度不会小于0).这个分布并不是像高斯分布那样,形成一个对称的形状。它的尾部可能稍长,而负数区域则为零。

2.在一些室外应用中,可能存在距离非常远,乃至无穷远处的点。我们的初始值中难以覆盖这些点,并且用高斯分布描述他们会有一些数值计算上的困难。(没彻底理解,为什么初始值中难以覆盖这些点?为什么用高斯分布描述他们会有数值困难,是因为数值过于小会造成巨大误差吗?)

  于是,逆深度应运而生。人们在仿真中发现,假设深度的倒数(也就是逆深度),为高斯分布是比较有效的。随后,在实际应用中,逆深度也具有更好的数值稳定性,从而逐渐成为一种通用的技巧。

 

SLAM中的逆深度参数化的更多相关文章

  1. SLAM中的EKF,UKF,PF原理简介

    这是我在知乎上问题写的答案,修改了一下排版,转到博客里.   原问题: 能否简单并且易懂地介绍一下多个基于滤波方法的SLAM算法原理? 目前SLAM后端都开始用优化的方法来做,题主想要了解一下之前基于 ...

  2. SLAM中的优化理论(一)—— 线性最小二乘

    最近想写一篇系列博客比较系统的解释一下 SLAM 中运用到的优化理论相关内容,包括线性最小二乘.非线性最小二乘.最小二乘工具的使用.最大似然与最小二 乘的关系以及矩阵的稀疏性等内容.一方面是督促自己对 ...

  3. 视觉SLAM中相机详解

    视觉SLAM中,通常是指使用相机来解决定位和建图问题. SLAM中使用的相机往往更加简单,不携带昂贵的镜头,以一定的速率拍摄周围的环境,形成一个连续的视频流. 相机分类: 单目相机:只是用一个摄像头进 ...

  4. 视觉SLAM中的数学基础 第二篇 四元数

    视觉SLAM中的数学基础 第二篇 四元数 什么是四元数 相比欧拉角,四元数(Quaternion)则是一种紧凑.易于迭代.又不会出现奇异值的表示方法.它在程序中广为使用,例如ROS和几个著名的SLAM ...

  5. 视觉SLAM中的数学基础 第三篇 李群与李代数

    视觉SLAM中的数学基础 第三篇 李群与李代数 前言 在SLAM中,除了表达3D旋转与位移之外,我们还要对它们进行估计,因为SLAM整个过程就是在不断地估计机器人的位姿与地图.为了做这件事,需要对变换 ...

  6. SLAM中的卡方分布

    视觉slam中相邻帧特征点匹配时,动辄上千个特征点,匹配错误的是难免的,而误匹配势必会对位姿精度以及建图精度造成影响,那么如何分辨哪些是误匹配的点对儿呢?如果已知两帧的的单应矩阵,假设单应矩阵是没有误 ...

  7. Java中的逆变与协变

    看下面一段代码 Number num = new Integer(1); ArrayList<Number> list = new ArrayList<Integer>(); ...

  8. javascript中对象的深度克隆

    记录一个常见的面试题,javascript中对象的深度克隆,转载自:http://www.2cto.com/kf/201409/332955.html 今天就聊一下一个常见的笔试.面试题,js中对象的 ...

  9. 视觉SLAM中的数学基础 第四篇 李群与李代数(2)

    前言 理解李群与李代数,是理解许多SLAM中关键问题的基础.本讲我们继续介绍李群李代数的相关知识,重点放在李群李代数的微积分上,这对解决姿态估计问题具有重要意义. 回顾 为了描述三维空间里的运动,我们 ...

随机推荐

  1. JAVASE经典面试问题(必须熟背),你Get到了吗?

    JAVASE经典面试问题(必须熟背) 1. 编译java程序使用什么命令?运行java使用什么命令? javac *.java java 类名 2. 什么是JDK,什么是JRE,JDK与JRE有什么区 ...

  2. day47 作业

    表准备 create table emp( id int not null unique auto_increment, name varchar(20) not null, sex enum('ma ...

  3. Python之函数、递归、内置函数

    本节内容 1. 函数基本语法及特性 2. 参数与局部变量 3. 返回值 嵌套函数 4.递归 5.匿名函数 6.函数式编程介绍 7.高阶函数 8.内置函数 温故知新 1. 集合 主要作用: 去重 关系测 ...

  4. Python函数02/函数的动态参数/函数的注释/名称空间/函数的嵌套/global以及nolocal的用法

    Python函数02/函数的动态参数/函数的注释/名称空间/函数的嵌套/global以及nolocal的用法 目录 Python函数02/函数的动态参数/函数的注释/名称空间/函数的嵌套/global ...

  5. 大话深度学习:B站Up主麦叔教你零代码实现图像分类神经网络

    之前,我在B站发布了“大话神经网络,10行代码不调包,听不懂你打我!”的视频后,因为简单易懂受到了很多小伙伴的喜欢! 但也有小伙伴直呼不够过瘾,因为大话神经网络只有4个神经元. 也有小伙伴问不写代码, ...

  6. 上亿数据怎么玩深度分页?兼容MySQL + ES + MongoDB

    面试题 & 真实经历 面试题:在数据量很大的情况下,怎么实现深度分页? 大家在面试时,或者准备面试中可能会遇到上述的问题,大多的回答基本上是分库分表建索引,这是一种很标准的正确回答,但现实总是 ...

  7. 用前端姿势玩docker【二】dockerfile定制镜像初体验

    前言 书接上文,关于dockerfile指令的api在此处不做赘述,在此只是记录下注意事项: '示坑以埋之'. 配置指令 FROM dockerfile必须以此开头 一个dockerfile可执行添加 ...

  8. ResNeXt论文阅读笔记.md

    目录 1. 提出背景 2. 核心思想 3. 论文核心 4. 分组卷积 5. 核心代码 论文: Aggregated Residual Transformations for Deep Neural N ...

  9. ✨Shell脚本实现Base64 加密解密

    加密算法 # !/bin/bash # 全局变量 str="" base64_encode_string(){ # 源数据 source_string=$1 echo " ...

  10. 【Django组件】WebSocket的简单实现

    1:HTML: <!DOCTYPE html><html lang="en"><head> <meta charset="UTF ...