【noi 2.6_1759】LIS 最长上升子序列(DP,3种解法)
题意我就不写了。解法有3种:
1.O(n^2)。2重循环枚举 i 和 j,f[i]表示前 i 位必选 a[i] 的最长上升子序列长度,枚举a[j]为当前 LIS 中的前一个数。
1 #include<cstdio>
2 #include<cstdlib>
3 #include<cstring>
4 #include<iostream>
5 using namespace std;
6
7 const int N=1010;
8 int a[N],f[N];
9
10 int mmax(int x,int y) {return x>y?x:y;}
11 int main()
12 {
13 int n,ans=0;
14 scanf("%d",&n);
15 for (int i=1;i<=n;i++) scanf("%d",&a[i]);
16 for (int i=1;i<=n;i++)
17 {
18 f[i]=1;
19 for (int j=1;j<i;j++)
20 if (a[i]>a[j]) f[i]=mmax(f[i],f[j]+1);
21 ans=mmax(ans,f[i]);
22 }
23 printf("%d",ans);
24 return 0;
25 }
1
2.O(n log n)。继正确但不高效的解法后,我们想要对时间复杂度降维。最常见的做法就是二分查找,这题就是把解法1的 j 的O(n)枚举变为O(log n)的二分。那么二分的范围肯定要包含当前的 LIS 的数,而且要知道这些数对应的 f[ ]值。因此,我们只能保存扫完前 i 个选出的最优的 LIS,上述2个条件都可以满足。同时不断扩大和更新(存尽量小的数)这个序列。
1 #include<cstdio>
2 #include<cstdlib>
3 #include<cstring>
4 #include<iostream>
5 using namespace std;
6
7 const int N=1010;
8 int a[N],f[N];
9
10 int ffind(int l,int r,int x)
11 {
12 if (l==r) return l;
13 int mid=(l+r)>>1;
14 if (x>f[mid]) return ffind(mid+1,r,x);
15 else return ffind(l,mid,x);
16 }
17 int main()
18 {
19 int n,ans=0;
20 scanf("%d",&n);
21 for (int i=1;i<=n;i++) scanf("%d",&a[i]);
22 f[++ans]=a[1];
23 for (int i=2;i<=n;i++)
24 {
25 int x;
26 if (a[i]>f[ans]) x=++ans;
27 else x=ffind(1,ans,a[i]);
28 f[x]=a[i];
29 }
30 printf("%d",ans);
31 return 0;
32 }
2
3.O(n log n)。(参考自蓝书 p62,挖了坑,没时间填了......)
1 for (int i=1;i<=n;i++) g[i]=INF;
2 for (int i=0;i<n;i++)
3 {
4 int k=lower_bound(g+1,g+n+1,A[i])-g;
5 d[i]=k;
6 g[k]=A[i];
7 }
【noi 2.6_1759】LIS 最长上升子序列(DP,3种解法)的更多相关文章
- 动态规划模板1|LIS最长上升子序列
LIS最长上升子序列 dp[i]保存的是当前到下标为止的最长上升子序列的长度. 模板代码: int dp[MAX_N], a[MAX_N], n; int ans = 0; // 保存最大值 for ...
- 算法设计 - LCS 最长公共子序列&&最长公共子串 &&LIS 最长递增子序列
出处 http://segmentfault.com/blog/exploring/ 本章讲解:1. LCS(最长公共子序列)O(n^2)的时间复杂度,O(n^2)的空间复杂度:2. 与之类似但不同的 ...
- POJ - 3903 Stock Exchange(LIS最长上升子序列问题)
E - LIS Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Descripti ...
- hdu 5256 序列变换(LIS最长上升子序列)
Problem Description 我们有一个数列A1,A2...An,你现在要求修改数量最少的元素,使得这个数列严格递增.其中无论是修改前还是修改后,每个元素都必须是整数. 请输出最少需要修改多 ...
- POJ 3903 Stock Exchange (E - LIS 最长上升子序列)
POJ 3903 Stock Exchange (E - LIS 最长上升子序列) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action ...
- POJ 1887 Testingthe CATCHER (LIS:最长下降子序列)
POJ 1887Testingthe CATCHER (LIS:最长下降子序列) http://poj.org/problem?id=3903 题意: 给你一个长度为n (n<=200000) ...
- LIS最长上升子序列O(n^2)与O(nlogn)的算法
动态规划 最长上升子序列问题(LIS).给定n个整数,按从左到右的顺序选出尽量多的整数,组成一个上升子序列(子序列可以理解为:删除0个或多个数,其他数的顺序不变).例如序列1, 6, 2, 3, 7, ...
- LIS 最长递增子序列
一.最长公共子序列 经典的动态规划问题,大概的陈述如下: 给定两个序列a1,a2,a3,a4,a5,a6......和b1,b2,b3,b4,b5,b6.......,要求这样的序列使得c同时是这两个 ...
- 动态规划——E (LIS())最长上升子序列
E - LIS Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Submit Stat ...
随机推荐
- 【分布式锁的演化】终章!手撸ZK分布式锁!
前言 这应该是分布式锁演化的最后一个章节了,相信很多小伙伴们看完这个章节之后在应对高并发的情况下,如何保证线程安全心里肯定也会有谱了.在实际的项目中也可以参考一下老猫的github上的例子,当然代码没 ...
- 技术基础 | Cassandra RBAC助你打击“虚拟海盗”,让他们对数据“战利品”望而不得
现如今,我们称虚拟世界里的海盗们为"黑客",他们所追寻的战利品就是在你数据库某处的数据. 而我们能够保证你的数据安全的工具之一,就是"Cassandra基于角色的访问 ...
- SpringBoot Logback无法获取配置中心属性
SpringBoot Logback无法获取配置中心属性 前言 最近在做项目中,需要把项目中的日志信息通过RabbitMQ将规定格式的消息发送到消息队列中,然后ELK系统通过消息队列拿日志并且保存起来 ...
- Trino总结
文章目录 1.Trino与Spark SQL的区别分析 2.Trino与Spark SQL解析过程对比 3.Trino基本概念 4.Trino架构 5.Trino SQL执行流程 6.Trino Ta ...
- kafka(三)原理剖析
一.生产者消息分区机制原理剖析 在使用Kafka 生产和消费消息的时候,肯定是希望能够将数据均匀地分配到所有服务器上.比如很多公司使用 Kafka 收集应用服务器的日志数据,这种数据都是很多的,特别是 ...
- GStreamer各个包构建
GStreamer按功能.维护的标准化程度.依赖库的版权差异等分了若干个包(package),如 gstreamer, gst-plugins-base, gst-plugins-good, gst- ...
- js12种应该注意的地方
1. == Javascript有两组相等运算符,一组是==和!=,另一组是===和!==.前者只比较值的相等,后者除了值以外,还比较类型是否相同. 请尽量不要使用前一组,永远只使用===和!==.因 ...
- 向HDFS中上传任意文本文件,如果指定的文件在HDFS中已经存在,由用户指定是追加到原有文件末尾还是覆盖原有的文件
1 import java.io.FileInputStream; 2 import java.io.IOException; 3 import java.util.Scanner; 4 5 impo ...
- Graceful restart of a server with active WebSocket
Graceful restart of a server with active WebSocket Simonwep/graceful-ws: ⛓ Graceful WebSocket wrappe ...
- http发送
package cn.com.yitong.wdph.util; import java.io.BufferedReader;import java.io.InputStream;import jav ...