Problem Description
Given two matrices A and B of size n×n, find the product of them.

bobo hates big integers. So you are only asked to find the result modulo 3.
 

Input
The input consists of several tests. For each tests:

The first line contains n (1≤n≤800). Each of the following n lines contain n integers -- the description of the matrix A. The j-th integer in the i-th line equals Aij. The next n lines describe the matrix B in similar format (0≤Aij,Bij≤109).
 

Output
For each tests:

Print n lines. Each of them contain n integers -- the matrix A×B in similar format.
 

Sample Input

1
0
1
2
0 1
2 3
4 5
6 7
 

Sample Output

0
0 1
2 1
 
题意:给你两个矩阵,让你把它们相乘后输出%3后的结果。
思路:普通的矩阵乘法+优化能过的,还有一种思路是开bitset<1000>bt[3],ct[3],储存每一行mod3后为0,1,2的情况,那么1*1=1,1 *2=2,2*1=2,2*2=1.
代码一:普通矩阵乘法+优化
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<bitset>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef long double ldb;
#define inf 99999999
#define pi acos(-1.0)
#define MOD 3
int n,m;
int data[4][805][805]; void solve()
{
int i,j,k;
for(i=0;i<n;i++){
for(j=0;j<m;j++){
data[3][i][j]=0;
}
}
for(i=0;i<n;i++){
for(k=0;k<m;k++){
if(data[1][i][k]>0){
for(j=0;j<m;j++){
data[3][i][j]=data[3][i][j]+data[1][i][k]*data[2][k][j];
}
}
}
}
} int main()
{
int i,j;
while(scanf("%d",&n)!=EOF)
{
m=n;
for(i=0;i<n;i++){
for(j=0;j<n;j++){
scanf("%d",&data[1][i][j]);
data[1][i][j]%=3;
}
} for(i=0;i<n;i++){
for(j=0;j<n;j++){
scanf("%d",&data[2][i][j]);
data[2][i][j]%=3;
}
} solve();
for(i=0;i<n;i++){
for(j=0;j<n;j++){
if(j<n-1)printf("%d ",data[3][i][j]%3);
else printf("%d\n",data[3][i][j]%3);
}
}
}
return 0;
}

代码二:用bitset

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<bitset>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef long double ldb;
#define inf 99999999
#define pi acos(-1.0)
#define MOD 3
#define maxn 805
bitset<1000>bt[maxn][3],ct[maxn][3]; int main()
{
int n,m,i,j,c;
while(scanf("%d",&n)!=EOF)
{
for(i=1;i<=n;i++){
for(j=0;j<3;j++){
bt[i][j].reset();
ct[i][j].reset();
}
}
for(i=1;i<=n;i++){
for(j=1;j<=n;j++){
scanf("%d",&c);
bt[i][c%3].set(j);
}
}
for(i=1;i<=n;i++){
for(j=1;j<=n;j++){
scanf("%d",&c);
ct[j][c%3].set(i);
}
}
for(i=1;i<=n;i++){
for(j=1;j<=n;j++){
c=((bt[i][1]&ct[j][1]).count()+(bt[i][1]&ct[j][2]).count()*2+(bt[i][2]&ct[j][1]).count()*2+(bt[i][2]&ct[j][2]).count() )%3;
if(j==n)printf("%d\n",c);
else printf("%d ",c);
}
}
}
return 0;
}

hdu4920Matrix multiplication (矩阵,bitset)的更多相关文章

  1. HDU 4920 Matrix multiplication(bitset优化)

    题目链接 Matrix multiplication 求矩阵A和B相乘的结果. 因为答案只要对3取模,所以我们可以通过一些方法来加速计算. 我们对两个矩阵各开两个bitset,分别存储模3余1和模3余 ...

  2. HDU 4920 Matrix multiplication(bitset)

    HDU 4920 Matrix multiplication 题目链接 题意:给定两个矩阵,求这两个矩阵相乘mod 3 思路:没什么好的想法,就把0的位置不考虑.结果就过了.然后看了官方题解,上面是用 ...

  3. UVa 442 Matrix Chain Multiplication(矩阵链,模拟栈)

    意甲冠军  由于矩阵乘法计算链表达的数量,需要的计算  后的电流等于行的矩阵的矩阵的列数  他们乘足够的人才  非法输出error 输入是严格合法的  即使仅仅有两个相乘也会用括号括起来  并且括号中 ...

  4. Codeforces 781D Axel and Marston in Bitland 矩阵 bitset

    原文链接https://www.cnblogs.com/zhouzhendong/p/CF781D.html 题目传送门 - CF781D 题意 有一个 n 个点的图,有 m 条有向边,边有两种类型: ...

  5. HDU 4920 Matrix multiplication(矩阵相乘)

    各种TEL,233啊.没想到是处理掉0的情况就能够过啊.一直以为会有极端数据.没想到居然是这种啊..在网上看到了一个AC的奇妙的代码,经典的矩阵乘法,仅仅只是把最内层的枚举,移到外面就过了啊...有点 ...

  6. Poj 3318 Matrix Multiplication( 矩阵压缩)

    Matrix Multiplication Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 18928   Accepted: ...

  7. HDU 4920 Matrix multiplication 矩阵相乘。稀疏矩阵

    Matrix multiplication Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/ ...

  8. POJ 3318 Matrix Multiplication(矩阵乘法)

    题目链接 题意 : 给你三个n维矩阵,让你判断A*B是否等于C. 思路 :优化将二维转化成一维的.随机生成一个一维向量d,使得A*(B*d)=C*d,多次生成多次测试即可使错误概率大大减小. #inc ...

  9. UVA442 Matrix Chain Multiplication 矩阵运算量计算(栈的简单应用)

    栈的练习,如此水题竟然做了两个小时... 题意:给出矩阵大小和矩阵的运算顺序,判断能否相乘并求运算量. 我的算法很简单:比如(((((DE)F)G)H)I),遇到 (就cnt累计加一,字母入栈,遇到) ...

随机推荐

  1. 【C++】《C++ Primer 》第三章

    第三章 字符串.向量和数组 一.命名空间的using声明 使用某个命名空间:例如 using std::cin表示使用命名空间std中的名字cin. 头文件的代码一般不应该使用using声明,这是因为 ...

  2. 【Flutter】功能型组件之跨组件状态共享

    前言   在Flutter开发中,状态管理是一个永恒的话题.   一般的原则是:如果状态是组件私有的,则应该由组件自己管理:如果状态要跨组件共享,则该状态应该由各个组件共同的父元素来管理.   对于组 ...

  3. 【Flutter】可滚动组件之GridView

    前言 GridView可以构建一个二维网格列表.需要关注的是gridDelegate参数,类型是SliverGridDelegate,它的作用是控制GridView子组件如何排列(layout).Sl ...

  4. LeetCode876 链表的中间结点

    给定一个带有头结点 head 的非空单链表,返回链表的中间结点. 如果有两个中间结点,则返回第二个中间结点. 示例 1: 输入:[1,2,3,4,5] 输出:此列表中的结点 3 (序列化形式:[3,4 ...

  5. Java基础概念性问题整理,面试题型整理,附带答案详解供参考,首次整理!

    题目目录 Java基础 1.JDK1.8新特性? 2.面向对象和面向过程的区别? 3.什么是值传递和引用传递? 4.什么是不可变对象? 5.讲讲类的实例化顺序? 6.java 创建对象的几种方式 7. ...

  6. Manjaro Linux 5.9.11-3安装和配置全局截图工具FlameShot教程

    背景说明 截图工具是日常适用频率较高的一种系统工具,在Linux下也有不少常用截图工具,如deepin-screenshot等,但是今天我们要介绍的是FlameShot--一款更加精致的Linux全局 ...

  7. Go中由WaitGroup引发对内存对齐思考

    转载请声明出处哦~,本篇文章发布于luozhiyun的博客:https://www.luozhiyun.com 本文使用的go的源码时14.4 WaitGroup使用大家都会,但是其中是怎么实现的我们 ...

  8. 关于maven多module的依赖问题

    之前的项目因为历史的原因,都是一个project里只包含了一个module,今年进入了新的项目组,出现了多个module,最近刚好也是在学<maven实战>因此想要将这个东西记录下来 工程 ...

  9. vagrant up报错【io.rb:32:in `encode': "\x95" followed by "\"" on GBK (Encoding::InvalidByteSequenceError)】

    vagrant up报错[io.rb:32:in `encode': "\x95" followed by """ on GBK (Encoding: ...

  10. 【Azure 应用服务】App Service中,为Java应用配置自定义错误页面,禁用DELETE, PUT方法

    问题定义 使用Azure应用服务(App Service),部署Java应用,使用Tomcat容器,如何自定义错误页面呢?同时禁用DELETE, PUT方法 解决办法 如何自定义错误页面呢?需要在 J ...