• 题意:给你两个长度为\(n\)的01串\(s\)和\(t\),可以选择\(s\)的前几位,取反然后反转,保证\(s\)总能通过不超过\(3n\)的操作得到\(t\),输出变换总数,和每次变换的位置.

  • 题解:构造题一定要充分利用题目所给的条件,对于\(s\)中的某一位i,假如它和\(t\)中的对应位置不同,我们先对前i个字符取反反转,然后再对第一个字符取反反转(就选了一个,反不反都无所谓),在取前i个位置取反反转,这样,我们就将第i个位置变换了,消耗了3次操作.这样就一定能保证在\(3n\)之内完成操作.

  • 代码:

    int t;
    int n;
    string s,tmp;
    vector<int> ans; int main() {
    ios::sync_with_stdio(false);cin.tie(0);
    cin>>t;
    while(t--){
    cin>>n;
    cin>>s>>tmp;
    ans.clear();
    for(int i=0;i<s.size();++i){
    if(s[i]!=tmp[i]){
    ans.pb(i+1);
    ans.pb(1);
    ans.pb(i+1);
    }
    }
    cout<<ans.size()<<" ";
    for(auto w:ans){
    cout<<w<<" ";
    }
    cout<<endl;
    } return 0;
    }

Codeforces Round #658 (Div. 2) C1. Prefix Flip (Easy Version) (构造)的更多相关文章

  1. Codeforces Round #658 (Div. 2) C2. Prefix Flip (Hard Version) (构造)

    题意:给你两个长度为\(n\)的01串\(s\)和\(t\),可以选择\(s\)的前几位,取反然后反转,保证\(s\)总能通过不超过\(2n\)的操作得到\(t\),输出变换总数,和每次变换的位置. ...

  2. Codeforces Round #672 (Div. 2) C1. Pokémon Army (easy version) (DP)

    题意:给你一组数\(a\),构造一个它的子序列\(b\),然后再求\(b_1-b2+b3-b4...\),问构造后的结果最大是多少. 题解:线性DP.我们用\(dp1[i]\)来表示在\(i\)位置, ...

  3. Codeforces Round #540 (Div. 3) F1. Tree Cutting (Easy Version) 【DFS】

    任意门:http://codeforces.com/contest/1118/problem/F1 F1. Tree Cutting (Easy Version) time limit per tes ...

  4. Codeforces Round #540 (Div. 3)--1118F1 - Tree Cutting (Easy Version)

    https://codeforces.com/contest/1118/problem/F1 #include<bits/stdc++.h> using namespace std; in ...

  5. Codeforces Round #599 (Div. 2) B1. Character Swap (Easy Version)

    This problem is different from the hard version. In this version Ujan makes exactly one exchange. Yo ...

  6. Codeforces Round #599 (Div. 2) B2. Character Swap (Hard Version) 构造

    B2. Character Swap (Hard Version) This problem is different from the easy version. In this version U ...

  7. Codeforces Round #599 (Div. 2) B1. Character Swap (Easy Version) 水题

    B1. Character Swap (Easy Version) This problem is different from the hard version. In this version U ...

  8. Codeforces Round #653 (Div. 3) E1. Reading Books (easy version) (贪心,模拟)

    题意:有\(n\)本书,A和B都至少要从喜欢的书里面读\(k\)本书,如果一本书两人都喜欢的话,那么他们就可以一起读来节省时间,问最少多长时间两人都能够读完\(k\)本书. 题解:我们可以分\(3\) ...

  9. Codeforces Round #650 (Div. 3) F1. Flying Sort (Easy Version) (离散化,贪心)

    题意:有一组数,每次操作可以将某个数移到头部或者尾部,问最少操作多少次使得这组数非递减. 题解:先离散化将每个数映射为排序后所对应的位置,然后贪心,求最长连续子序列的长度,那么最少的操作次数一定为\( ...

随机推荐

  1. 学习rac管理

    文章转自:http://blog.itpub.net/7728585/viewspace-752185/ crsctl query crs activeversion 查看版本 ocrconfig - ...

  2. P2024 [NOI2001]食物链(种类并查集)

    题目链接: https://www.luogu.org/problemnew/show/P2024 题目描述 动物王国中有三类动物 A,B,C,这三类动物的食物链构成了有趣的环形.A 吃 B,B 吃 ...

  3. [Usaco2016 Dec]Moocast

    原题链接https://www.lydsy.com/JudgeOnline/problem.php?id=4749 可以对于每个点\(i\),往跟\(i\)距离小于等于\(p[i]\)的点\(j\)都 ...

  4. Angular入门到精通系列教程(11)- 模块(NgModule),延迟加载模块

    1. 摘要 2. NgModule举例.说明 3. Angular CLI生成模块 4. 延迟加载模块 5. 总结 环境: Angular CLI: 11.0.6 Angular: 11.0.7 No ...

  5. Angular入门到精通系列教程(13)- 路由守卫(Route Guards)

    1. 摘要 2. 路由守卫(Route Guards) 2.1. 创建路由守卫 2.2. 控制路由是否可以激活 2.3. 控制路由是否退出(离开) 3. 总结 环境: Angular CLI: 11. ...

  6. 前端面试准备笔记之JavaScript(03)

    01. 变量声明提升 在预解析的时候,成员变量和函数,被提升到最高的位置,方便其他程序访问. 可以先使用后声明. 只提升变量名,不提升变量值 let const 声明的变量不具有变量声明提升. // ...

  7. Java并发包源码学习系列:阻塞队列实现之LinkedBlockingQueue源码解析

    目录 LinkedBlockingQueue概述 类图结构及重要字段 构造器 出队和入队操作 入队enqueue 出队dequeue 阻塞式操作 E take() 阻塞式获取 void put(E e ...

  8. vue开发中的"骚操作"

    前言 在与同事协作开发的过程中,见识到了不少"骚操作".因为之前都没用过,所以我愿称之为"高级技巧"! Vue.extend 在交互过程中,有个需求就是点击图标 ...

  9. PostgreSQL创建只读权限的用户

    1.创建只读角色 CREATE ROLE readaccess; 2.授予对现有表的访问权限 GRANT USAGE ON SCHEMA public TO readaccess; GRANT SEL ...

  10. 分布式缓存 — Docker

    Docker 是一个开源项目,它基于 Google 公司推出的 Go 语言实现. 项目后来加入了 Linux 基金会,遵从了 Apache 2.0 协议,项目代码在 GitHub 上进行维护. Doc ...