说实话感觉不是一道蓝题……感觉挺水的,不过为了水题解,水题就够了(其实是觉得思考的过程比较典型,记录一下)

题解

刚开始看这道题感觉上没什么思路,但是我们可以先考虑用 \(O(n)\) 的时间去枚举发生的出逃次数,再用 \(O(n^2)\) 的时间去计算每一个出逃次数的情况下不一致条目的最小值。

现在我们考虑对于任意一个出逃次数 \(d\) ,我们如何计算。不妨设 \(f_{i,j}\) 表示到第 \(i\) 个点出逃过 \(j\) 次的最小差异值,易得 \(dp\) 方程为:

\[f_{i,j}=min(f_{k,j-1}+cost_{k+1,i})
\]

其中 \(cost_{l,r}\) 是指:区间 \(l\) ~ \(r\) 为一次完整的出逃区间(即其中没有发生过一次出逃且 \(l\) 和 \(r+1\) 发生了出逃)时的差异值。可以发现这个东西是可以 \(O(n^2)\) 预处理的。

那么现在需要枚举 \(i\) ,\(j\) ,\(k\) ,\(d\),复杂度为 \(O(n^4)\) ,肯定是不行的,但是我们可以发现在处理略大的 \(d\) 值时其实是可以计算出较小的 \(d\) 值的,所以我们可以直接一起计算,就不需要枚举 \(d\) 了,复杂度就降为 \(O(n^3)\) ,可行了。

代码如下:

#include<bits/stdc++.h>
using namespace std;
const int N=105;
int n,a[N];
int cost[N][N],f[N][N];
int main()
{
cin>>n;
for(int i=1;i<=n;++i)
scanf("%d",&a[i]);
for(int i=1;i<=n;++i)
{
for(int j=i;j<=n;++j)
cost[i][j]=cost[i][j-1]+(a[j]!=j-i);
}
// for(int i=1;i<=n;++i)
// {
// for(int j=i;j<=n;++j)
// printf("%d %d %d\n",i,j,cost[i][j]);
// }
memset(f,63,sizeof(f));
for(int i=1;i<=n;++i)
{
f[i][1]=cost[1][i];
for(int j=1;j<i;++j)
{
for(int k=1;k<=j;++k)
f[i][k+1]=min(f[i][k+1],f[j][k]+cost[j+1][i]);
}
}
for(int i=1;i<=n;++i)
printf("%d\n",f[n][i]);
return 0;
}

P4267 [USACO18FEB]Taming the Herd的更多相关文章

  1. 解题:USACO18FEB Taming the Herd

    题面 从零开始的DP学习系列之贰(我的DP真的就这么烂TAT) 设DP状态的另一个技巧,考虑题目中有关答案的各种信息 然后这种和结尾有关系的$dp$可以考虑向前找结尾来转移 设$dp[i][j]$表示 ...

  2. [USACO18FEB]Taming the Herd

    Luogu4267 题解 对于\(dp[i][j]\) , 预处理出一些转移一步的次数 , 然后可以很方便的转移 : \(dp[i][j]=min(dp[k][j-1]+cnt[j][i])\)

  3. BZOJ5196: [Usaco2018 Feb]Taming the Herd(DP暴力)

    5196: [Usaco2018 Feb]Taming the Herd Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 78  Solved: 71[ ...

  4. 2019 GDUT Rating Contest II : A. Taming the Herd

    题面: A. Taming the Herd Input file: standard input Output file: standard output Time limit: 1 second Me ...

  5. DP小题集

    P2736 "破锣摇滚"乐队 Raucous Rockers 你刚刚继承了流行的"破锣摇滚"乐队录制的尚未发表的N(1 <= N <= 20)首歌的 ...

  6. USACO比赛题泛刷

    随时可能弃坑. 因为不知道最近要刷啥所以就决定刷下usaco. 优先级排在学习新算法和打比赛之后. 仅有一句话题解.难一点的可能有代码. 优先级是Gold>Silver.Platinum刷不动. ...

  7. hdu 2715 Herd Sums

    Herd Sums Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  8. POJ 2140 Herd Sums

    http://poj.org/problem?id=2140 Description The cows in farmer John's herd are numbered and branded w ...

  9. zookeeper分布式锁避免羊群效应(Herd Effect)

    本文(转自:http://jm-blog.aliapp.com/?p=2554)主要讲述在使用ZooKeeper进行分布式锁的实现过程中,如何有效的避免“羊群效应( herd effect)”的出现. ...

随机推荐

  1. Java基础 之三 继承

    1.子类 1) 定义子类 //假设父类(也叫做超类)是Employee类,用extends来表示继承 public class Manager extends Employee{ //域和方法 pri ...

  2. Git-commit与回滚

    # 提交-信息 git commit -m "message" git commit -a -m "message" // 等同于 git add . & ...

  3. spring-boot-starter-parent和spring-boot-dependencies

    如何创建一个SpringBoot项目,SpringBoot的依赖引入都是基于starter的,通常创建一个SpringBoot项目都是通过继承关系指定pom文件中的parent. <parent ...

  4. 【网鼎杯2020朱雀组】Web WriteUp

    nmap nmap语法,很简单. 127.0.0.1' -iL /flag -oN vege.txt ' phpweb 打开,抓包,发现可以传递函数和其参数 试了一下很多函数都被过滤了,不能执行系统命 ...

  5. java开发两年,这些线程知识你都不知道,你怎么涨薪?

    前言 什么是线程:程序中负责执行的哪个东东就叫做线程(执行路线,进程内部的执行序列),或者说是进程的子任务. Java中实现多线程有几种方法 继承Thread类: 实现Runnable接口: 实现Ca ...

  6. Markdown特点

    前言 以前经常在 gitHub 中看到 .md 格式的文件,一直没有注意,也不明白为什么文本文档的后缀不是 .txt ,后来无意中看到了 Markdown,看到了用这个东西写得一些web界面等特别的规 ...

  7. Shamir秘密共享方案 (Python)

    Shamir's Secret Sharing scheme is an important cryptographic algorithm that allows private informati ...

  8. C Looooops POJ - 2115

    数论好题.. 香! 首先我们看到这一题, 题意是 \[a + c * x \equiv b (mod \ \ 2 ^ k) \] 对此式移一下项, 得 \[c * x \equiv b - a (mo ...

  9. Java基础教程——转换流

    转换流 通常,Window默认的编码方式是GBK,Java项目一般建议设为UTF-8编码.这时候读取文件可能出现乱码.事实上实际应用中编码格式不匹配的场景非常多. 转换流可以指定编码方式,用于解决乱码 ...

  10. Docker Vs Podman

    翻译自 Chetansingh 2020年4月24日的博文<Docker Vs Podman> [1] 容器化的一场全新革命是从 Docker 开始的,Docker 的守护进程管理着所有的 ...