BJOI2017 机动训练
Description
定义机动路径为:
- 没有自环
- 路径至少包含两个格子
- 从起点开始每一步都向不远离终点的方向移动
相同地形序列指路径上顺序经过的地形序列。
定义机动路径的权值为相同地形序列的数量之和。
求所有机动路径的权值之和。
Solution
同一类机动路径,他的贡献就是数量的平方 \(\Leftrightarrow\) 答案即本质不同机动路径数量的平方和 \(\Leftrightarrow\) 即两个人走的机动路径形式相同的方案总和。
由于 从起点开始每一步都向不远离终点的方向移动 这一性质,所以只要我们确定了他移动的 \(x, y\) 方向,那么就可以 \(DP\) 了,因为具有了无后效性。那就枚举一下两个人走的方向。
对于一个人来说,分为左上、左下、右上、右下(一类型)、正上方、正下方、正右方、正左方(二类型)四种状态。
发现一类型包含二类型,所以要简单的容斥一下:
如果两个人都是一类型,那么权值贡献是 \(+\)。
如果两个人 \(1\) 个一类型,\(1\) 个二类型,那么是 \(-\)。
如果两个都是二类型,那么要 \(+\)。
然后当前的 \(f_{a,b,c,d}\) 表示第一个人在 \((a, b)\) ,第二个人在 \((c, d)\)。从起点走到这两个地方的方案数。
把能走的方式处理一下,然后写记搜就行。
复杂度
\(O(64n^2m^2)\)
此题卡常,可以利用 \(work(a, b, c, d) = work(c, d, a, b)\) 的对称性来减小 \(2\) 倍常数
#include <iostream>
#include <cstdio>
#include <cstring>
#define rint register int
using namespace std;
const int N = 31, P = 1e9 + 9;
int n, m, ans, dx[2][3], dy[2][3], cnt[2], f[N][N][N][N], w[3][3][3][3];
char g[N][N];
int inline dp(int a, int b, int c, int d) {
if (a < 1 || a > n || b < 1 || b > m || c < 1 || c > n || d < 1 || d > m || g[a][b] != g[c][d]) return 0;
if (~f[a][b][c][d]) return f[a][b][c][d];
rint &v = f[a][b][c][d] = 1;
for (rint i = 0; i < cnt[0]; i++)
for (rint j = 0; j < cnt[1]; j++)
(v += dp(a - dx[0][i], b - dy[0][i], c - dx[1][j], d - dy[1][j])) %= P;
return v;
}
void prework(int o, int x, int y) {
cnt[o] = 0;
for (int a = -1; a <= 1; a++) {
if (a && a != x) continue;
for (int b = -1; b <= 1; b++) {
if ((b && b != y) || (!a && !b)) continue;
dx[o][cnt[o]] = a, dy[o][cnt[o]] = b, cnt[o]++;
}
}
}
int inline work(int a, int b, int c, int d) {
if (~w[a + 1][b + 1][c + 1][d + 1]) return w[a + 1][b + 1][c + 1][d + 1];
prework(0, a, b); prework(1, c, d);
memset(f, -1, sizeof f);
int res = 0;
for (rint i = 1; i <= n; i++)
for (rint j = 1; j <= m; j++)
for (rint k = 1; k <= n; k++)
for (rint l = 1; l <= m; l++) (res += dp(i, j, k, l)) %= P;
w[a + 1][b + 1][c + 1][d + 1] = w[c + 1][d + 1][a + 1][b + 1] = res;
return res;
}
int main() {
memset(w, -1, sizeof w);
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i++) scanf("%s", g[i] + 1);
for (int a = -1; a <= 1; a++) {
for (int b = -1; b <= 1; b++) {
if (!a && !b) continue;
for (int c = -1; c <= 1; c++) {
for (int d = -1; d <= 1; d++) {
if (!c && !d) continue;
if ((a * b && c * d) || (!(a * b) && !(c * d))) (ans += work(a, b, c, d)) %= P;
else ans = (ans - work(a, b, c, d) + P) % P;
}
}
}
}
printf("%d\n", ans);
return 0;
}
BJOI2017 机动训练的更多相关文章
- [BZOJ4859][BJOI2017]机动训练(DP)
4859: [BeiJing2017]机动训练 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 105 Solved: 63[Submit][Stat ...
- P3713 [BJOI2017]机动训练
这个题简直神仙,求相同路径的平方就等于两个人走相同路径的方案数.然后...暴力搜索+记忆化就行了,比较玄学. 题干: 题目描述 整个岛可以看作一片 n*m 的区域,每个格子有自己的地形. 一条路径由一 ...
- 【LOJ】#2178. 「BJOI2017」机动训练
题解 遇见平方和就转有序对呗 dp类似从很多点出发每次走一步的转移方式 然后我too naive的,枚举路径长度来决定更新次数,愉快TLE 改成记搜就过了 代码 #include <bits/s ...
- bzoj 4859 [BeiJing2017]机动训练
题面 https://www.lydsy.com/JudgeOnline/problem.php?id=4859 题解 和管道取珠类似 首先把平方转化成两条路径经过的图案相同的方案数 对于一条路径 方 ...
- AHOI2018训练日程(3.10~4.12)
(总计:共90题) 3.10~3.16:17题 3.17~3.23:6题 3.24~3.30:17题 3.31~4.6:21题 4.7~4.12:29题 ZJOI&&FJOI(6题) ...
- NOI Online #2 提高组 游记
没 NOI Online 1 挂的惨就来写游记吧,不知道为啥 NOI Online 1 民间数据测得 60 分的 T1 最后爆零了... 昏昏沉沉的醒来,吃了早饭,等到 \(8:30\) 进入比赛网页 ...
- 一个小 Trick
平方变两次 一个状态 \(S\) 有一个贡献,所有状态 \(S\) 组成集合 \(U\) . 然后我们要统计下面这个东西 \[ans=\sum_{S\in U}f^2(S) \] 然后我们就可以看作是 ...
- BJOI做题记录
BJOI做题记录 终于想起还要做一下历年省选题了2333 然而咕了的还是比做了的多2333 LOJ #2178. 「BJOI2017」机动训练 咕了. LOJ #2179. 「BJOI2017」树的难 ...
- SSD框架训练自己的数据集
SSD demo中详细介绍了如何在VOC数据集上使用SSD进行物体检测的训练和验证.本文介绍如何使用SSD实现对自己数据集的训练和验证过程,内容包括: 1 数据集的标注2 数据集的转换3 使用SSD如 ...
随机推荐
- Socket listen 简要分析
#include <sys/types.h> /* See NOTES */#include <sys/socket.h>int listen(int sockfd, int ...
- vue 切换主题(换肤)功能
一:先写好两个css样式放在static文件夹中 二:在index.html中添加css link链接 <link rel="stylesheet" id="sty ...
- Ceph数据盘怎样实现自动挂载
前言 在Centos7 下,现在采用了 systemctl来控制服务,这个刚开始用起来可能不太习惯,不过这个服务比之前的服务控制要强大的多,可以做更多的控制,本节将来介绍下关于 Ceph的 osd 磁 ...
- HDU100题简要题解(2040~2049)
HDU2040 亲和数 题目链接 Problem Description 古希腊数学家毕达哥拉斯在自然数研究中发现,220的所有真约数(即不是自身的约数)之和为: 1+2+4+5+10+11+20+2 ...
- day95:flask:SQLAlchemy数据库查询进阶&关联查询
目录 1.数据库查询-进阶 1.常用的SQLAlchemy查询过滤器 2.常用的SQLAlchemy查询结果的方法 3.filter 4.order_by 5.count 6.limit&of ...
- 计算机&编程语言发展史
计算机&编程语言发展史 编辑于2020-11-18 计算机的基本组成 计算机的发展经历了哪几代? 第一代 电子管计算机 第二代 晶体管计算机 第三代 集成电路计算机 第四代 大规模和超大规模集 ...
- Talk About My Route To Edit
Initially, I plan to write 4 columns:Python, Qt, Linux,and respectively, Career. However, my ambitio ...
- 怎么在Word上编辑数学公式?教你一招
在日常工作中我们常常会用到word来编辑文字.但是有时候也免不了要输入一些公式,尤其是数学.物理还有化学方面等较复杂的公式.这时候用word来编辑的话会很麻烦,很难编辑出来,那该怎么办呢? 我们都知道 ...
- 商业智能(BI)可视化大屏的设计及使用原则
信息时代,数据是一种可贵的资源,我们可能经常听到的一句话就是:用数据说话.但是,在没有进行系统化整理之前,数据不过只是一串串冰冷的数字,我们很难从大量的数据中获取到有价值的信息.只有通过合适的可视化工 ...
- AFNetWorking 丢失数据
问题描述: 使用AFNetWorking请求数据,请求成功,但是拿不到所需要的数据,但是使用其他平台都可以拿到数据. 原因分析: AFNetWorking无法解析. 解决方式: AFJSONRespo ...