Spark参数优化
- a. 提升Spark运行
spark.sql.adaptive.enabled=true
spark的自适应执行,启动Adaptive Execution
spark.dynamicAllocation.enabled=true
开启动态资源分配,Spark可以根据当前作业的负载动态申请和释放资源
spark.dynamicAllocation.maxExecutors=${numbers}
开启动态资源分配后,同一时刻,最多可申请的executor个数。task较多时,可适当调大此参数,保证task能够并发执行完成,缩短作业执行时间
spark.dynamicAllocation.minExecutors=3
某一时刻executor的最小个数。平台默认设置为3,即在任何时刻,作业都会保持至少有3个及以上的executor存活,保证任务可以迅速调度
spark.sql.shuffle.partitions
JOIN或聚合等需要shuffle的操作时,设定从mapper端写出的partition个数。类似于MR中的reducer,当partition多时,产生的文件也会多
spark.sql.adaptive.shuffle.targetPostShuffleInputSize=67108864
当mapper端两个partition的数据合并后数据量小于targetPostShuffleInputSize时,Spark会将两个partition进行合并到一个reducer端进行处理。默认64m
spark.sql.adaptive.minNumPostShufflePartitions=50
当spark.sql.adaptive.enabled参数开启后,有时会导致很多分区被合并,为了防止分区过少而影响性能。设置该参数,保障至少的shuffle分区数
spark.hadoop.mapreduce.input.fileinputformat.split.maxsize=134217728
控制在ORC切分时stripe的合并处理。当几个stripe的大小大于设定值时,会合并到一个task中处理。适当调小该值以增大读ORC表的并发 【最小大小的控制参数
spark.hadoop.mapreduce.input.fileinputformat.split.minsize】
- b. 提升Executor执行能力
spark.executor.memory=4g
用于缓存数据、代码执行的堆内存以及JVM运行时需要的内存。设置过小容易导致OOM,而实际执行中需要的大小可以通过文件来估算
spark.yarn.executor.memoryOverhead=1024
Spark运行还需要一些堆外内存,直接向系统申请,如数据传输时的netty等
spark.executor.cores=4
单个executor上可以同时运行的task数,该参数决定了一个executor上可以并行执行几个task。几个task共享同一个executor的内存(spark.executor.memory+spark.yarn.executor.memoryOverhead)。适当提高该参数的值,可以有效增加程序的并发度,是作业执行的更快。不过同时也增加executor内存压力,容易出现OOM
c. 其他参数
参数名称 当前 说明/含义 spark.sql.autoBroadcastJoinThreshold 64mb 使用BroadcastJoin时候表的大小阈值(-1 则取消使用) spark.sql.broadcastTimeout 300s BroadcastJoin的等待超时的时间 spark.default.parallelism 24 指定每个stage默认的并行task数量,处理RDD时才会起作用,对Spark SQL的无效 spark.speculation true 执行任务的推测执行。这意味着如果一个或多个任务在一个阶段中运行缓慢,它们将被重新启动 spark.speculation.quantile 在特定阶段启用推测之前必须完成的部分任务。推荐0.75/0.95 spark.kryoserializer.buffer.max 64m Kryo串行缓冲区的最大允许大小(以MiB为单位)。它必须大于您尝试序列化的任何对象,并且必须小于2048m。如果在Kryo中收到“超出缓冲区限制”异常,请增加此值。推荐1024m spark.sql.hive.metastorePartitionPruning true spark.sql.hive.caseSensitiveInferenceMode INFER_AND_SAVE 不太了解,推荐使用NEVER_INFER spark.sql.optimizer.metadataOnly true 启用仅使用表的元数据的元数据查询优化来生成分区列,而不是表扫描 d. 常见问题
- OOM内存溢出
Spark根据 spark.executor.memory+spark.yarn.executor.memoryOverhead的值向RM申请一个容器,当executor运行时使用的内存超过这个限制时,会被yarn kill掉。失败信息为:Container killed by YARN for exceeding memory limits. XXX of YYY physical memory used. Consider boosting spark.yarn.executor.memoryOverhead。合理的调整这两个参数
- 小文件数过多
当spark执行结束后,如果生成较多的小文件可以通过hive对文件进行合并。
rc/orc文件: ALTER TABLE table_name CONCATENATE ;
其他文件:指定输出文件大小并重写表(insert overwrite table _name_new select * from table_name)
- spark结果与hive结果不一致
- 数据文件字段中存在特殊字符带来的错行错列,剔除特殊字符,如: regexp_replace(name,'\n|\r|\t|\r\n|\u0001', '')
- spark为了优化读取parquet格式文件,使用自己的解析方式读取数据。将该方式置为false
set spark.sql.hive.convertMetastoreParquet=false- hive中对于null和空值与spark的差异。已知的办法是调整hive的参数:serialization.null.format 如:
alter table table_name set serdeproperties('serialization.null.format' = '');
作者:别停下思考
链接:https://www.jianshu.com/p/4449dce2acc7
来源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
Spark参数优化的更多相关文章
- 【转载】Spark性能优化指南——高级篇
前言 数据倾斜调优 调优概述 数据倾斜发生时的现象 数据倾斜发生的原理 如何定位导致数据倾斜的代码 查看导致数据倾斜的key的数据分布情况 数据倾斜的解决方案 解决方案一:使用Hive ETL预处理数 ...
- 【转载】 Spark性能优化指南——基础篇
转自:http://tech.meituan.com/spark-tuning-basic.html?from=timeline 前言 开发调优 调优概述 原则一:避免创建重复的RDD 原则二:尽可能 ...
- 【转】【技术博客】Spark性能优化指南——高级篇
http://mp.weixin.qq.com/s?__biz=MjM5NjQ5MTI5OA==&mid=2651745207&idx=1&sn=3d70d59cede236e ...
- 【转】Spark性能优化指南——基础篇
http://mp.weixin.qq.com/s?__biz=MjM5NDMwNjMzNA==&mid=2651805828&idx=1&sn=2f413828d1fdc6a ...
- spark核心优化详解
大家好!转眼又到了经验分享的时间了.吼吼,我这里没有摘要也没有引言,只有单纯的经验分享,请见谅哦! 言归正传,目前在大数据领域能够提供的核心计算的工具,如离线计算hadoop生态圈的mr计算模型,以及 ...
- Spark性能优化指南——高级篇(转载)
前言 继基础篇讲解了每个Spark开发人员都必须熟知的开发调优与资源调优之后,本文作为<Spark性能优化指南>的高级篇,将深入分析数据倾斜调优与shuffle调优,以解决更加棘手的性能问 ...
- Spark性能优化指南——基础篇(转载)
前言 在大数据计算领域,Spark已经成为了越来越流行.越来越受欢迎的计算平台之一.Spark的功能涵盖了大数据领域的离线批处理.SQL类处理.流式/实时计算.机器学习.图计算等各种不同类型的计算操作 ...
- Spark性能优化指南-高级篇
转自https://tech.meituan.com/spark-tuning-pro.html,感谢原作者的贡献 前言 继基础篇讲解了每个Spark开发人员都必须熟知的开发调优与资源调优之后,本文作 ...
- Spark性能优化指南——基础篇
本文转自:http://tech.meituan.com/spark-tuning-basic.html 感谢原作者 前言 在大数据计算领域,Spark已经成为了越来越流行.越来越受欢迎的计算平台之一 ...
随机推荐
- Unable to locate package python3 错误解决办法
错误 huny@DESKTOP-N1EBKQP:/mnt/c/Users/Administrator$ sudo apt-get install python3 Reading package lis ...
- jmeter测试udp
jemter本身不支持udp测试,需要下载安装第三方插件,或者下载一个插件管理器(下面那个蝴蝶一样的图标),里面有各种插件可以供你下载 下载链接:https://jmeter-plugins.org/ ...
- kali查看本机ip
- DjangoForm表单组件
Form组件的介绍: 我们之前在HTML页面中利用form表单向后端提交数据时,都会写一些获取用户输入的标签并且用form标签把它们包起来. 与此同时我们在好多场景下都需要对用户的输入做校验,比如校验 ...
- charles的安装
1:点击安装文件charles-proxy-4.2.8-win64.msi 2:点击下一步 3:勾选同意,点击"next"按钮 4:指定安装的路径,继续点击"next&q ...
- python核心高级学习总结6------面向对象进阶之元类
元类引入 在多数语言中,类就是一组用来描述如何生成对象的代码段,在python中同样如此,但是在python中把类也称为类对象,是的,你没听错,在这里你只要使用class关键字定义了类,其解释器在执行 ...
- moviepy音视频剪辑:追踪人脸打马赛克的三种实现方式
☞ ░ 前往老猿Python博文目录 ░ 一.引言 在moviepy官网的案例<Tracking and blurring someone's face>和CSDN的moviepy大神uc ...
- Python基础教程目录
老猿Python博文目录 专栏:使用PyQt开发图形界面Python应用 老猿Python部分代码样例 老猿Python重难点知识博文汇总 老猿Python博客地址 第1章 Python学习环境构建目 ...
- PyQt(Python+Qt)学习随笔:QTableWidgetItem项数据的data和setData访问方法
老猿Python博文目录 专栏:使用PyQt开发图形界面Python应用 老猿Python博客地址 QTableWidget部件中的QTableWidgetItem项数据可以通过项的data( int ...
- PyQt(Python+Qt)学习随笔:QListView的gridSize属性
老猿Python博文目录 专栏:使用PyQt开发图形界面Python应用 老猿Python博客地址 QListView的gridSize属性用于控制视图中数据项排列所在网格的大小,gridSize默认 ...