深度优先搜索(DFS)

深度优先搜索叫DFS(Depth First Search)。OK,那么什么是深度优先搜索呢?_?


样例:

举个例子,你在一个方格网络中,可以简单理解为我们的地图,要从A点到B点找到最短路径:

我们要制定一个策略,以此来建立递归函数。在这种情况下,先往右一直走或往下走,如果往上走或往左走,便必然得不到最优解。

此时你从A点出发,一直朝着右走:

发现右边已经没有可以访问的节点了,再选择朝下递归:

此时找不到可以往右走或往下走的点了,所以只好返回,一直返回到第一个可用节点:

如上重复,在朝下递归:

我们便得到了一个答案:4!虽然程序实际运行情况不会这么简单,所以有时需要考虑更加周到一点。但是我们知道这么多就够了。(你甚至可以写个断点来看它到底干了啥)。

以此,我们可以大体总结一下深度优先搜索的一个基本思想:从一个节点出发,一直到找不到可行节点时,再选择返回。

深度优先搜索是建立在以栈为基础的算法,而递归又恰好符合这个特性,我们可以大致写出深度优先搜索的伪代码:

void dfs(所走的次数, 其他参数)
{
if (找到了符合条件的节点)
{
//更新最小值
return;
}
for (遍历所有方法)
{ 
   //如果找到了一个可行节点,便递归到下一个栈帧
if (该方法可行)
{
dfs(所走次数 + , 其他参数);
}
}
}

但是这样子写会有一个问题:同样的一个节点会被走很多次!这还不是最可怕的,在没有总结出 “如果往上走或往左走,便必然得不到最优解” 的情况下,甚至可能会出现程序放飞自我,A->B,然后B->A,如此死循环然后栈溢出。我们只好引用一个二维数组,只要走过这个节点便对其进行标记表示这里走过了,往后的递归就不能再访问此节点,来避免A->B B->A的尴尬情况。

void dfs(所走的次数, 其他参数)
{
if (找到了符合条件的节点)
{
//更新最小值
return;
}
for (遍历所有方法)
{
if (该方法可行)
{
//标记该节点走过
dfs(所走次数 + , 其他参数);
//回溯:将该节点标记未走过
}
}
}

既然我们写出了代码,为什么还要进行一个叫“回溯(sù)”的事情呢?我们写代码时不能保证一定可以得到最优解,或许从一条路搜索过来需要走5次,从另一条路走过来只要3次。如果没有回溯的话,就会使走过的节点无法再走,更优的解无法覆盖原来的解,需要3次的走法就无法覆盖只需要5次的走法,从而得不到最优解。尽管如此,深度优先搜索的时间开支依旧不小。再打个比方,你已经知道走这条路不是最优解了,但你还是不得不把它走完。所以,我们就需要用到剪枝来剔除不必要的搜索。在这里,剪枝方案就是:如果当前所使用的步数,已经大于等于到终点的所需的步数,那么就舍去这条路线。因为从此处为起点出发的任何一个节点都不可能是最优解了

int ans = 0x7f7f7f7f //答案,初始值可以看做无限大
void dfs(所走的次数, 其他参数)
{
if (所走的次数 > ans)
{
return;
}
if (找到了符合条件的节点)
{
//更新最小值
return;
}
for (遍历所有方法)
{
if (该方法可行)
{
//标记该节点走过
dfs(所走次数 + , 其他参数);
//回溯:将该节点标记未走过
}
}
}

这样,就是一个标准的深度优先搜索模板。我们也可以针对其他例题进行修改(有些情况甚至连剪枝都剪不了)。


例题(洛谷P2404):

现在引入一道例题:

题目描述

任何一个大于1的自然数n,总可以拆分成若干个小于n的自然数之和。现在给你一个自然数n,要求你求出n的拆分成一些数字的和。每个拆分后的序列中的数字从小到大排序。然后你需要输出这些序列,其中字典序小的序列需要优先输出。

输入格式

输入:待拆分的自然数n。

输出格式

输出:若干数的加法式子。

输入输出样例

输入 #1
7
输出 #1
1+1+1+1+1+1+1
1+1+1+1+1+2
1+1+1+1+3
1+1+1+2+2
1+1+1+4
1+1+2+3
1+1+5
1+2+2+2
1+2+4
1+3+3
1+6
2+2+3
2+5
3+4
 

条件:

n ≤ 8

分析一下题目,不难发现,输出样例中,每一行(每一组解)后面的数字一定不小于前面的数字,并且所有数字之和一定等于且不大于n,那么我们可以大致分析出dfs的参数:
//从左到右的参数依次为:不能小于该数,现在选择第几个数字,数字之和
void dfs(int num, int now, int sum)
{
  ...
}

其中的num可以简化略掉,但是为了方便阅读还是加上去了。

那么,我们还需要一个数组来保存所找到的解,我们把它定义为s[10]。题目中n不会大于8,但是为了避免一些奇奇怪怪的错误,故开为10。很多以索引为1开头的写法,都推荐把数组开大一点(反正评测姬上的内存也不是自家的)。

//s数组用来存储当前的解。题目中给定n不可能大于8,但是为了避免一些奇怪的错误,故将数组s开大一点
int s[], n;

那么,如何判断是否找到了一个可行解呢?其实不难,当参数sum刚好等于n时,即可输出答案(不是大于等于),这样就无需去计算当期解的和,减少运算量。

//找到了一个可行解便打印出来
if (sum == n)
{
for (int i = ;i < now - ;i++)
printf ("%d+", s[i]);
printf ("%d\n", s[now - ]);
return;
}

那么接下来就是枚举所有可行的数字,此时num就派上用场了:接下来可行的数字一定在num到n之间。而now就是存储当前操作第几个数字的索引(索引听不懂的回去补课)

//遍历所有可行数字,如果是i<=n的话,深搜到最后会将n自己打印出来
for (int i = num;i < n;i++)
{
s[now] = i;
dfs(i, now + , sum + i);
s[now] = ; //此行可省略
}

代码中第6行可以省略。为什么可以省略呢?因为以我们的写法,是不会再次访问s[now]的,所以就没必要回溯。

全部代码:

#include <cstdio>
//s数组用来存储当前的解。题目中给定n不可能大于8,但是为了避免一些奇怪的错误,故将数组s开大一点
int s[], n;
//从左到右的参数依次为:不能小于该数,现在选择第几个数字,数字之和
void dfs(int num, int now, int sum)
{
//如果总和超过了n,就直接返回
if (sum > n)
return;
//找到了一个可行解便打印出来
if (sum == n)
{
for (int i = ;i < now - ;i++)
printf ("%d+", s[i]);
printf ("%d\n", s[now - ]);
return;
}
//遍历所有可行数字,如果是i<=n的话,深搜到最后会将n自己打印出来
for (int i = num;i < n;i++)
{
s[now] = i;
dfs(i, now + , sum + i);
s[now] = ; //此行可省略
}
}
int main()
{
scanf ("%d", &n);
dfs(, , );
return ;
}

总结:

深度优先搜索其中函数很好写,但是大体思路有一点难以理解,甚至会出现玄学代码的情况(改一个符号便出现完全例外的情况),所以写代码的时候要尽可能严谨,并且不要乱剪枝。深度优先搜索本质上是一个暴力算法,并且多以递归+回溯的形式出现,如果优化和剪枝不好并且数据刁钻,经常出现TLE的情况。

题外话:

这是我写的第一个博客,可能会出现一些奇奇怪怪的错误,不过可以在评论区留言,我一定会改的(艾玛好紧张QAQ)

[算法入门]——深度优先搜索(DFS)的更多相关文章

  1. 算法总结—深度优先搜索DFS

    深度优先搜索(DFS) 往往利用递归函数实现(隐式地使用栈). 深度优先从最开始的状态出发,遍历所有可以到达的状态.由此可以对所有的状态进行操作,或列举出所有的状态. 1.poj2386 Lake C ...

  2. 【算法入门】深度优先搜索(DFS)

    深度优先搜索(DFS) [算法入门] 1.前言深度优先搜索(缩写DFS)有点类似广度优先搜索,也是对一个连通图进行遍历的算法.它的思想是从一个顶点V0开始,沿着一条路一直走到底,如果发现不能到达目标解 ...

  3. [算法&数据结构]深度优先搜索(Depth First Search)

    深度优先 搜索(DFS, Depth First Search) 从一个顶点v出发,首先将v标记为已遍历的顶点,然后选择一个邻接于v的尚未遍历的顶点u,如果u不存在,本次搜素终止.如果u存在,那么从u ...

  4. 深度优先搜索 DFS 学习笔记

    深度优先搜索 学习笔记 引入 深度优先搜索 DFS 是图论中最基础,最重要的算法之一.DFS 是一种盲目搜寻法,也就是在每个点 \(u\) 上,任选一条边 DFS,直到回溯到 \(u\) 时才选择别的 ...

  5. 深度优先搜索DFS和广度优先搜索BFS简单解析(新手向)

    深度优先搜索DFS和广度优先搜索BFS简单解析 与树的遍历类似,图的遍历要求从某一点出发,每个点仅被访问一次,这个过程就是图的遍历.图的遍历常用的有深度优先搜索和广度优先搜索,这两者对于有向图和无向图 ...

  6. 利用广度优先搜索(BFS)与深度优先搜索(DFS)实现岛屿个数的问题(java)

    需要说明一点,要成功运行本贴代码,需要重新复制我第一篇随笔<简单的循环队列>代码(版本有更新). 进入今天的主题. 今天这篇文章主要探讨广度优先搜索(BFS)结合队列和深度优先搜索(DFS ...

  7. 深度优先搜索DFS和广度优先搜索BFS简单解析

    转自:https://www.cnblogs.com/FZfangzheng/p/8529132.html 深度优先搜索DFS和广度优先搜索BFS简单解析 与树的遍历类似,图的遍历要求从某一点出发,每 ...

  8. 算法与数据结构基础 - 深度优先搜索(DFS)

    DFS基础 深度优先搜索(Depth First Search)是一种搜索思路,相比广度优先搜索(BFS),DFS对每一个分枝路径深入到不能再深入为止,其应用于树/图的遍历.嵌套关系处理.回溯等,可以 ...

  9. 图的深度优先搜索(DFS)和广度优先搜索(BFS)算法

    深度优先(DFS) 深度优先遍历,从初始访问结点出发,我们知道初始访问结点可能有多个邻接结点,深度优先遍历的策略就是首先访问第一个邻接结点,然后再以这个被访问的邻接结点作为初始结点,访问它的第一个邻接 ...

随机推荐

  1. Python Ethical Hacking - WEB PENETRATION TESTING(4)

    CRAWING SPIDER Goal -> Recursively list all links starting from a base URL. 1. Read page HTML. 2. ...

  2. 用Tableau制作官网流量周报

    好久没写博客了,上班摸鱼时间分享一下在工作中做的东西吧,先上图. 数据方面取自百度统计,身处传统类型公司,官网没有数据库,只好将就一下啦,反正是免费的,体验也还可以. 关于百度统计注册.添加管理站点和 ...

  3. echarts 实战 : 恼人的间隔问题

    使用 echarts 的时候,可能我们需要这个图表的间隔是固定的.比如 3个 4个 5个. (注意计算间隔数量的时候是不算 x轴 本身的.) 这个问题看似简单,其实有点麻烦. yAxis.splitN ...

  4. 导出Telegram贴纸

    如何导出Telegram的贴纸1.在Telegram中 @StickerSetBot 机器人2.输入 /newpack 开启机器人,会提示 OK now send me stickers or sti ...

  5. Logging with ElasticSearch, Kibana, ASP.NET Core and Docker

    好久不见,前两周经历了人生第一次"伪牛市",基金和股市大起大落,更加坚信"你永远赚不到超出你认知范围之外的钱,除非靠着运气",老韭菜诚不欺我也. 当能力与野心不 ...

  6. Ross Girshick讲解如何writing good research papers

    ICCV 2019上,Facebook AI 的 Ross Girshick 做了一个关于目标检测和实例分割的 tutorial,最后用19页PPT讲解了如何 writing good researc ...

  7. Andriod开发---《横竖屏切换时 Activity的生命周期的总结》

    横屏切换竖屏Activity的生命周期详解,下面分析一下切换时具体的生命周期: 1.新建一个Activity,并把各个生命周期打印出来 2.运行Activity,得到如下信息 onCreate--&g ...

  8. MacOS英语学习

    总结于B站Mac云课堂:https://www.bilibili.com/video/BV1vf4y1U7SZ 各个软件的链接: Edge:https://www.microsoft.com/zh-c ...

  9. 11-Pandas之排序(df.sort_index()、df.sort_values()、随机重排、随机采样)

    排序是一种索引机制的一种常见的操作方法,也是Pandas重要的内置运算,主要包括以下3种方法: 排序方法 说明 sort_values() 根据某一列的值进行排序 sort_index() 根据索引进 ...

  10. luogu P4166 [SCOI2007]最大土地面积 凸包 旋转卡壳

    LINK:最大土地面积 容易想到四边形的边在凸包上面 考虑暴力枚举凸包上的四个点计算面积. 不过可以想到可以直接枚举对角线的两个点找到再在两边各找一个点 这样复杂度为\(n^3\) 可以得到50分. ...