# 时间序列和常用操作
import pandas as pd # 每隔五天--5D
pd.date_range(start = '',end = '',freq = '5D')
'''
DatetimeIndex(['2020-01-01', '2020-01-06', '2020-01-11', '2020-01-16',
'2020-01-21', '2020-01-26', '2020-01-31'],
dtype='datetime64[ns]', freq='5D')
'''
# 每隔一周--W
pd.date_range(start = '',end = '',freq = 'W')
'''
DatetimeIndex(['2020-03-01', '2020-03-08', '2020-03-15', '2020-03-22',
'2020-03-29'],
dtype='datetime64[ns]', freq='W-SUN')
'''
# 间隔两天,五个数据
pd.date_range(start = '',periods = 5,freq = '2D')
# periods 几个数据 ,freq 间隔时期,两天
'''
DatetimeIndex(['2020-03-01', '2020-03-03', '2020-03-05', '2020-03-07',
'2020-03-09'],
dtype='datetime64[ns]', freq='2D')
'''
# 间隔三小时,八个数据
pd.date_range(start = '',periods = 8,freq = '3H')
'''
DatetimeIndex(['2020-03-01 00:00:00', '2020-03-01 03:00:00',
'2020-03-01 06:00:00', '2020-03-01 09:00:00',
'2020-03-01 12:00:00', '2020-03-01 15:00:00',
'2020-03-01 18:00:00', '2020-03-01 21:00:00'],
dtype='datetime64[ns]', freq='3H')
'''
# 三点开始,十二个数据,间隔一分钟
pd.date_range(start = '',periods = 12,freq = 'T')
'''
DatetimeIndex(['2020-03-01 03:00:00', '2020-03-01 03:01:00',
'2020-03-01 03:02:00', '2020-03-01 03:03:00',
'2020-03-01 03:04:00', '2020-03-01 03:05:00',
'2020-03-01 03:06:00', '2020-03-01 03:07:00',
'2020-03-01 03:08:00', '2020-03-01 03:09:00',
'2020-03-01 03:10:00', '2020-03-01 03:11:00'],
dtype='datetime64[ns]', freq='T')
'''
# 每个月的最后一天
pd.date_range(start = '',end = '',freq = 'M')
'''
DatetimeIndex(['2019-01-31', '2019-02-28', '2019-03-31', '2019-04-30',
'2019-05-31', '2019-06-30', '2019-07-31', '2019-08-31',
'2019-09-30', '2019-10-31', '2019-11-30', '2019-12-31'],
dtype='datetime64[ns]', freq='M')
'''
# 间隔一年,六个数据,年末最后一天
pd.date_range(start = '',periods = 6,freq = 'A')
'''
DatetimeIndex(['2019-12-31', '2020-12-31', '2021-12-31', '2022-12-31',
'2023-12-31', '2024-12-31'],
dtype='datetime64[ns]', freq='A-DEC')
'''
# 间隔一年,六个数据,年初最后一天
pd.date_range(start = '',periods = 6,freq = 'AS')
'''
DatetimeIndex(['2020-01-01', '2021-01-01', '2022-01-01', '2023-01-01',
'2024-01-01', '2025-01-01'],
dtype='datetime64[ns]', freq='AS-JAN')
'''
# 使用 Series 对象包含时间序列对象,使用特定索引
data = pd.Series(index = pd.date_range(start = '',periods = 24,freq = 'H'),data = range(24))
'''
2020-03-21 00:00:00 0
2020-03-21 01:00:00 1
2020-03-21 02:00:00 2
2020-03-21 03:00:00 3
2020-03-21 04:00:00 4
2020-03-21 05:00:00 5
2020-03-21 06:00:00 6
2020-03-21 07:00:00 7
2020-03-21 08:00:00 8
2020-03-21 09:00:00 9
2020-03-21 10:00:00 10
2020-03-21 11:00:00 11
2020-03-21 12:00:00 12
2020-03-21 13:00:00 13
2020-03-21 14:00:00 14
2020-03-21 15:00:00 15
2020-03-21 16:00:00 16
2020-03-21 17:00:00 17
2020-03-21 18:00:00 18
2020-03-21 19:00:00 19
2020-03-21 20:00:00 20
2020-03-21 21:00:00 21
2020-03-21 22:00:00 22
2020-03-21 23:00:00 23
Freq: H, dtype: int64
'''
# 查看前五个数据
data[:5]
'''
2020-03-21 00:00:00 0
2020-03-21 01:00:00 1
2020-03-21 02:00:00 2
2020-03-21 03:00:00 3
2020-03-21 04:00:00 4
Freq: H, dtype: int64
'''
# 三分钟重采样,计算均值
data.resample('3H').mean()
'''
2020-03-21 00:00:00 1
2020-03-21 03:00:00 4
2020-03-21 06:00:00 7
2020-03-21 09:00:00 10
2020-03-21 12:00:00 13
2020-03-21 15:00:00 16
2020-03-21 18:00:00 19
2020-03-21 21:00:00 22
Freq: 3H, dtype: int64
'''
# 五分钟重采样,求和
data.resample('5H').sum()
'''
2020-03-21 00:00:00 10
2020-03-21 05:00:00 35
2020-03-21 10:00:00 60
2020-03-21 15:00:00 85
2020-03-21 20:00:00 86
Freq: 5H, dtype: int64
'''
# 计算OHLC open,high,low,close
data.resample('5H').ohlc()
'''
open high low close
2020-03-21 00:00:00 0 4 0 4
2020-03-21 05:00:00 5 9 5 9
2020-03-21 10:00:00 10 14 10 14
2020-03-21 15:00:00 15 19 15 19
2020-03-21 20:00:00 20 23 20 23
'''
# 将日期替换为第二天
data.index = data.index + pd.Timedelta('1D')
# 查看前五条数据
data[:5]
'''
2020-03-22 00:00:00 0
2020-03-22 01:00:00 1
2020-03-22 02:00:00 2
2020-03-22 03:00:00 3
2020-03-22 04:00:00 4
Freq: H, dtype: int64
'''
# 查看指定日期是星期几
# pd.Timestamp('20200321').weekday_name
# 'Saturday' # 查看指定日期的年份是否是闰年
pd.Timestamp('').is_leap_year
# True # 查看指定日期所在的季度和月份
day = pd.Timestamp('')
# Timestamp('2020-03-21 00:00:00') # 查看日期的季度
day.quarter
# # 查看日期所在的月份
day.month
# # 转换为 python 的日期时间对象
day.to_pydatetime()
# datetime.datetime(2020, 3, 21, 0, 0)

2020-05-07

pandas_时间序列和常用操作的更多相关文章

  1. pandas_一维数组与常用操作

    # 一维数组与常用操作 import pandas as pd # 设置输出结果列对齐 pd.set_option('display.unicode.ambiguous_as_wide',True) ...

  2. 【三】用Markdown写blog的常用操作

    本系列有五篇:分别是 [一]Ubuntu14.04+Jekyll+Github Pages搭建静态博客:主要是安装方面 [二]jekyll 的使用 :主要是jekyll的配置 [三]Markdown+ ...

  3. php模拟数据库常用操作效果

    test.php <?php header("Content-type:text/html;charset='utf8'"); error_reporting(E_ALL); ...

  4. Mac OS X常用操作入门指南

    前两天入手一个Macbook air,在装软件过程中摸索了一些基本操作,现就常用操作进行总结, 1关于触控板: 按下(不区分左右)            =鼠标左键 control+按下        ...

  5. mysql常用操作语句

    mysql常用操作语句 1.mysql -u root -p   2.mysql -h localhost -u root -p database_name 2.列出数据库: 1.show datab ...

  6. nodejs配置及cmd常用操作

    一.cmd常用操作 1.返回根目录cd\ 2.返回上层目录cd .. 3.查找当前目录下的所有文件dir 4.查找下层目录cd window 二.nodejs配置 Node.js安装包及源码下载地址为 ...

  7. Oracle常用操作——创建表空间、临时表空间、创建表分区、创建索引、锁表处理

    摘要:Oracle数据库的库表常用操作:创建与添加表空间.临时表空间.创建表分区.创建索引.锁表处理 1.表空间 ■  详细查看表空间使用状况,包括总大小,使用空间,使用率,剩余空间 --详细查看表空 ...

  8. python 异常处理、文件常用操作

    异常处理 http://www.jb51.net/article/95033.htm 文件常用操作 http://www.jb51.net/article/92946.htm

  9. byte数据的常用操作函数[转发]

    /// <summary> /// 本类提供了对byte数据的常用操作函数 /// </summary> public class ByteUtil { ','A','B',' ...

随机推荐

  1. hive如何获取当前时间

    在大多数的sql中获取当前时间都是用now()函数即可,hive获取当前时间的函数与sql 不一样 在impala中执行now()函数时是可以通过的 然而在hive中执行now()函数却报错: hiv ...

  2. FreeMarkerz在List中取任意一条数据的某一个值

    首先你要知道要取的数据的下标 <#list itemsList as item> <#if item_index==1> <#if "${item.value} ...

  3. Xshell如何连接

    Xshell如何连接

  4. Let's GO(二)

    人生苦短,Let's GO Let's GO(一) Let's GO(二) Let's GO(三) Let's GO(四) 今天我学了什么? 1. Map map:映射,使用散列表(hash)实现 m ...

  5. 外部应用复制 表格 到word中 设置表格自适应

    word 批量设置表格宽度自适应 描述 : 我们经常从 外部 如 excel,html 等其他文件 中复制的表格到word 文档 经常会出现在 word 中显示不全的问题 主要是源格式的表格 宽度比 ...

  6. java 数据结构(一):java常用类 一 String类

    java.lang.String类的使用1.概述String:字符串,使用一对""引起来表示.1.String声明为final的,不可被继承2.String实现了Serializa ...

  7. 数据分析06 /pandas高级操作相关案例:人口案例分析、2012美国大选献金项目数据分析

    数据分析06 /pandas高级操作相关案例:人口案例分析.2012美国大选献金项目数据分析 目录 数据分析06 /pandas高级操作相关案例:人口案例分析.2012美国大选献金项目数据分析 1. ...

  8. Video 自动播放

    先说ios ios之前的政策是视频只能在用户主动操作后才能播放,且播放时必须全屏. 随着 iOS 10 的正式发布,Safari 也迎来了大量更新,首先划出重点:1)iOS 10 Safari 支持特 ...

  9. 07-Python面对对象初级

    一.简介 面对过程编程: 根据操作数据的函数或语句块来设计程序. 面对对象编程:把一些函数,数据,方法和功能结合起来,用“对象”包裹组织程序的一种方法. 类和对象是面向对象编程的两个主要方面.类创建一 ...

  10. bzoj2292【POJ Challenge 】永远挑战*

    bzoj2292[POJ Challenge ]永远挑战 题意: 有向图,每条边长度为1或2,求1到n最短路.点数≤100000,边数≤1000000. 题解: 有人说spfa会T,所以我用了dijk ...