7.18 NOI模拟赛 因懒无名 线段树分治 线段树维护直径
LINK:因懒无名
20分显然有\(n\cdot q\)的暴力。
还有20分 每次只询问一种颜色的直径不过带修改。
容易想到利用线段树维护直径就可以解决了。
当然也可以进行线段树分治 每种颜色存一下直径的端点即可。
考虑100分。
考虑到直径两个端点有区间可加性 所以直接外面套一个线段树维护区间端点即可。
修改采用上述做法两种均可。然后就做完了.
code
//#include<bits/stdc++.h>
#include<iostream>
#include<cstdio>
#include<ctime>
#include<cctype>
#include<queue>
#include<deque>
#include<stack>
#include<iostream>
#include<iomanip>
#include<cstdio>
#include<cstring>
#include<string>
#include<ctime>
#include<cmath>
#include<cctype>
#include<cstdlib>
#include<queue>
#include<deque>
#include<stack>
#include<vector>
#include<algorithm>
#include<utility>
#include<bitset>
#include<set>
#include<map>
#define ll long long
#define db double
#define INF 100001
#define ldb long double
#define pb push_back
#define put_(x) printf("%d ",x);
#define get(x) x=read()
#define gt(x) scanf("%d",&x)
#define gi(x) scanf("%lf",&x)
#define put(x) printf("%d\n",x)
#define putl(x) printf("%lld\n",x)
#define rep(p,n,i) for(RE int i=p;i<=n;++i)
#define go(x) for(int i=lin[x],tn=ver[i];i;tn=ver[i=nex[i]])
#define fep(n,p,i) for(RE int i=n;i>=p;--i)
#define vep(p,n,i) for(RE int i=p;i<n;++i)
#define pii pair<int,int>
#define mk make_pair
#define RE register
#define P 1000000007ll
#define gf(x) scanf("%lf",&x)
#define pf(x) ((x)*(x))
#define uint unsigned long long
#define ui unsigned
#define EPS 1e-4
#define sq sqrt
#define S second
#define F first
#define mod 1000000007
#define l(p) t[p].l
#define r(p) t[p].r
#define L(p) t[p].L
#define R(p) t[p].R
#define mx(p) t[p].mx
using namespace std;
char *fs,*ft,buf[1<<15];
inline char gc()
{
return (fs==ft&&(ft=(fs=buf)+fread(buf,1,1<<15,stdin),fs==ft))?0:*fs++;
}
inline int read()
{
RE int x=0,f=1;RE char ch=gc();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=gc();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=gc();}
return x*f;
}
const int MAXN=100010;
int n,m,len,Q,maxx,id,cnt,vv,ww,rt;
int c[MAXN],root[MAXN],d[MAXN];
int f[MAXN<<1][20],Log[MAXN<<1],dfn[MAXN],g[MAXN],pos[MAXN];
int lin[MAXN],nex[MAXN<<1],ver[MAXN<<1];
vector<int>w;
inline void add(int x,int y)
{
ver[++len]=y;
nex[len]=lin[x];
lin[x]=len;
}
inline void dfs(int x,int fa)
{
f[++cnt][0]=x;dfn[x]=cnt;d[x]=d[fa]+1;
//f为ST表元素 ->dfn->cnt
g[++id]=x;pos[id]=x;//g为dfs序->pos->id;
go(x)if(tn!=fa)
{
dfs(tn,x);
f[++cnt][0]=x;
}
}
inline int cmp(int x,int y){return d[x]>d[y]?y:x;}
inline int LCA(int x,int y)
{
x=dfn[x];y=dfn[y];
if(x>y)swap(x,y);
int z=Log[y-x+1];
return cmp(f[x][z],f[y-(1<<z)+1][z]);
}
inline int dist(int x,int y)
{
if(!x||!y)return 0;
int lca=LCA(x,y);
return d[x]+d[y]-2*d[lca];
}
struct wy
{
int l,r,L,R;int mx;
inline wy friend operator +(wy a,wy b)
{
if(!b.L&&!b.R)return a;
if(!a.L&&!a.R)return b;
wy c;
if(a.mx>b.mx)c=a;else c=b;
if((ww=dist(a.L,b.L))>c.mx)c.L=a.L,c.R=b.L,c.mx=ww;
if((ww=dist(a.L,b.R))>c.mx)c.L=a.L,c.R=b.R,c.mx=ww;
if((ww=dist(a.R,b.L))>c.mx)c.L=a.R,c.R=b.L,c.mx=ww;
if((ww=dist(a.R,b.R))>c.mx)c.L=a.R,c.R=b.R,c.mx=ww;
return c;
}
}t[MAXN*60];
inline void insert(int &p,int l,int r,int x,int w)
{
if(!p)p=++vv;
if(l==r)
{
L(p)=R(p)=w;
return;
}
int mid=(l+r)>>1;
if(x<=mid)insert(l(p),l,mid,x,w);
else insert(r(p),mid+1,r,x,w);
int wl=l(p),wr=r(p);
t[p]=t[l(p)]+t[r(p)];
t[p].l=wl;t[p].r=wr;
}
inline void build(int &p,int l,int r)
{
p=++vv;
if(l==r){t[p]=t[root[l]];return;}
int mid=(l+r)>>1;
build(l(p),l,mid);
build(r(p),mid+1,r);
int wl=l(p),wr=r(p);
t[p]=t[l(p)]+t[r(p)];
t[p].l=wl;t[p].r=wr;
}
inline void change(int p,int l,int r,int x)
{
if(l==r)
{
t[p]=t[root[x]];
return;
}
int mid=(l+r)>>1;
if(x<=mid)change(l(p),l,mid,x);
else change(r(p),mid+1,r,x);
int wl=l(p),wr=r(p);
t[p]=t[l(p)]+t[r(p)];
t[p].l=wl;t[p].r=wr;
}
inline wy ask(int p,int l,int r,int L,int R)
{
if(!p)return t[0];
if(L<=l&&R>=r)return t[p];
int mid=(l+r)>>1;
if(R<=mid)return ask(l(p),l,mid,L,R);
if(L>mid)return ask(r(p),mid+1,r,L,R);
return ask(l(p),l,mid,L,R)+ask(r(p),mid+1,r,L,R);
}
int main()
{
freopen("noname.in","r",stdin);
freopen("noname.out","w",stdout);
get(n);get(m);get(Q);
rep(1,n,i)get(c[i]);
rep(2,n,i)
{
int get(x),get(y);
add(x,y);add(y,x);
}
dfs(1,0);
rep(2,cnt,i)Log[i]=Log[i>>1]+1;
rep(1,Log[cnt],j)rep(1,cnt-(1<<j)+1,i)f[i][j]=cmp(f[i][j-1],f[i+(1<<j-1)][j-1]);
rep(1,n,i)insert(root[c[i]],1,n,g[i],i);
build(rt,1,m);
rep(1,Q,i)
{
int get(op),get(L),get(R);
if(op==1)
{
insert(root[c[L]],1,n,g[L],0);
change(rt,1,m,c[L]);
c[L]=R;
insert(root[c[L]],1,n,g[L],L);
change(rt,1,m,c[L]);
}
else put(ask(rt,1,m,L,R).mx);
}
return 0;
}
</details>
7.18 NOI模拟赛 因懒无名 线段树分治 线段树维护直径的更多相关文章
- 7.18 NOI模拟赛 树论 线段树 树链剖分 树的直径的中心 SG函数 换根
LINK:树论 不愧是我认识的出题人 出的题就是牛掰 == 他好像不认识我 考试的时候 只会写42 还有两个subtask写挂了 拿了37 确实两个subtask合起来只有5分的好成绩 父亲能转移到自 ...
- 计蒜客模拟赛 #5 (B 题) 动态点分治+线段树
虽然是裸的换根dp,但是为了在联赛前锻炼码力,强行上了点分树+线段树. 写完+调完总共花了不到 $50$ 分钟,感觉还行. code: #include <bits/stdc++.h> # ...
- NOI模拟赛 Day1
[考完试不想说话系列] 他们都会做呢QAQ 我毛线也不会呢QAQ 悲伤ING 考试问题: 1.感觉不是很清醒,有点困╯﹏╰ 2.为啥总不按照计划来!!! 3.脑洞在哪里 4.把模拟赛当作真正的比赛,紧 ...
- 6.28 NOI模拟赛 好题 状压dp 随机化
算是一道比较新颖的题目 尽管好像是两年前的省选模拟赛题目.. 对于20%的分数 可以进行爆搜,对于另外20%的数据 因为k很小所以考虑上状压dp. 观察最后答案是一个连通块 从而可以发现这个连通块必然 ...
- 【2018.12.10】NOI模拟赛3
题目 WZJ题解 大概就是全场就我写不过 $FFT$ 系列吧……自闭 T1 奶一口,下次再写不出这种 $NTT$ 裸题题目我就艹了自己 -_-||| 而且这跟我口胡的自创模拟题 $set1$ 的 $T ...
- NOI 模拟赛 #2
得分非常惨惨,半个小时写的纯暴力 70 分竟然拿了 rank 1... 如果 OYJason 和 wxjor 在可能会被爆踩吧 嘤 T1 欧拉子图 给一个无向图,如果一个边集的导出子图是一个欧拉回路, ...
- 【NOI P模拟赛】最短路(树形DP,树的直径)
题面 给定一棵 n n n 个结点的无根树,每条边的边权均为 1 1 1 . 树上标记有 m m m 个互不相同的关键点,小 A \tt A A 会在这 m m m 个点中等概率随机地选择 k k k ...
- NOI模拟赛Day5
T1 有and,xor,or三种操作,每个人手中一个数,求和左边进行某一种运算的最大值,当t==2时,还需要求最大值的个数. test1 20% n<=1000 O(n^2)暴力 test2 2 ...
- NOI模拟赛Day4
看到成绩的时候我的内心** woc第一题写错了呵呵呵呵呵呵呵呵 人不能太浪,会遭报应的** ------------------------------------------------------ ...
随机推荐
- List集合-02.LinkedList
2.LinkedList 2.1 UML继承关系图 2.2 底层存储节点 通过内部类Node存储,可以看出是双向的链表结构 private static class Node<E> { E ...
- Layui数据表格加入自定义扩展方法(重新渲染Render当前页数据)
具体开发中遇到的问题如下, 数据表格的重新渲染或重新加载会导致当前操作的分页 或 配置被清空.我正在操作第5页,重新渲染后就回到了最原始第1页. 需要达到的效果是: 不调用接口,仅仅只是从table. ...
- A Simple Problem,题解
题目: 分析: 看到式子,推一推其实就是(y+x)*(y-x)=n,显然可以根号n的枚举,判断一下合不合法直接出结果,然后就是代码.注意x!=0. #include <cstdio> #i ...
- 前端开发-css
css: 是给html标签装饰的,变得更好看. 注释: 单行注释:/*注释内容*/ 多行注释:/* 注释内容 注释内容 注释内容 */ 通常我们在写css代码时也会用注释来划分区域(html代码多,同 ...
- 萌新计划 PartⅡ
Part Ⅱ web 9-15 这一部分的题,主要是绕过过滤条件,进行命令执行 0x01 web 9 过滤条件: if(preg_match("/system|exec|highlight/ ...
- windows python的多进程
最近打比赛,apply操作极慢,队友使用了线程池,用多核开辟多线程跑,加速. 在阿里平台上,都没问题. 我是win10系统+jupyter notebook 多线程那个模块运行,会显示一直运行,p.c ...
- Java多线程详解总结
一.基本概念 程序(program): 是为完成特定任务.用某种语言编写的一组指令的集合.即指一 段静态的代码,静态对象. 进程(process):是程序的一次执行过程,或是正在运行的一个程序.是一个 ...
- ElementUI中 el-table-column 显示的数据为多个返回数据的拼接
遇到个问题就是其中有个要展示的数据来自接口返回的两个字段. 原用法是: 原以为prop=" "中只能放一个字段的数据,想放两个字段数据的话,要把 <el-table-colu ...
- [spring] -- AOP、IOC、DI篇
AOP(面向切面编程) 怎么理解这个切面编程的概念及优点? 概念: 横切关注点与业务逻辑相分离,切面能帮助我们模块化横切关注点: 优点: 现在每个关注点都集中于一个地方,而不是分散到多处代码中: 服务 ...
- 一款直击痛点的优秀http框架,让我超高效率完成了和第三方接口的对接
1.背景 因为业务关系,要和许多不同第三方公司进行对接.这些服务商都提供基于http的api.但是每家公司提供api具体细节差别很大.有的基于RESTFUL规范,有的基于传统的http规范:有的需要在 ...