>传送门<
题意:对于一个有n位(这n位从高位到低位分别是AnAn-1An-2 ... A2A1)的十进制数,我们定义它的权值F(x)=An*2n-1 + An-1*2n-2 + ... + A2*2 + A1*1.现在给你两个数AB,请计算[0,B]范围内有多少个权值<=F(A)的数

思路:(这个下面文字是有点多,可能是我太弱了,在刚开始学的时候只有这样我才能理解QAQ~)

其实F(x)只是给每一个数位带上一个权值v = 2^(p-1)F(x)最大是值不会超过5000,我们完全可以抛开权值来思考,写代码的时候再加上权值即可,这样思考和写草稿之类的会方便很多,不考虑每一位的权值的话即是数位的前缀和。

很容易想到一个dp式是dp[pos][sum];表示当前在第pos位,前缀和为sum的答案,快速把数位dp敲完,交上去,然后会发现TLE掉了,这题的时限只有500ms,TLE的原因是什么呢,就是记忆化不够彻底

在做数位dp入门题 不要62 的时候可能有些人会注意到,dp数组只需要初始化一次即可,这是因为不要62题意中是不包含4和连续的62的数的个数,这里的条件是一个数本身的性质,也就是说,一个数有没有4或者连续的62和你输入的[l,r]区间是无关的,比如1234是不合法的,无论你输入1 - 1000 还是 1 - 10000,1234都是不合法的。

但是这里是不一样的,题意要求小于F(a),而a是输入的,而dp数组定义是:dp[pos][sum],表示当前在第pos位,前缀和为sum的答案, 如假设上限是55555, 那么123xxx 和 321xxx 的答案都是 dp[3][6] ,这就是记忆化的结果,因为我不需要考虑前面具体的数的123 还是321 114之类的,只要他们的前缀和sum相同并且在同样的数位,后面xxx的情况都是一样的,因为后面的约束条件都是和不大于F(a)-sum。

问题就是在这个地方,由于我的记忆化是和输入的a也就是F(a)有关,所以我不能把它当作一个数的性质来记忆话,比如同样是123xxx,对于F(a) = 10F(a) = 20,后面xxx可行的情况是不一样的,a=10的时候,后面的约束是不大于F(a)-sum = 4a = 20的时候约束为不大于F(a)-sum = 14,从而导致了每次输入不同的a都要重新初始化dp数组,重新搜索一次。这里可以通过对dp状态的定义做一点小小的改变,使得约束条件变为与F(a)无关,从而不需要每次初始化重新搜索,定义dp[pos][sum],表示当前在第pos位,F(a)-sum的答案sum为到第pos位为止的数位前缀和),这时在第pos位的约束条件是后面所有的数的和不大于sum,这时记忆化的是sum,是与F(a)无关的,比如当F(a) = 10F(a) = 20时,F(a) = 10时,123xxx、321xxx等对应的是dp[3][4] F(a)=20时,556xxx、466xxx对应的也是dp[3][4],因为2种情况的posF(a)-sum都是相同的,所以记忆化一次即可,不必初始化

总结一下,在设计数位dp状态时最好把每次询问的变量作为初始值而不是状态转移、判定时依赖的量(比如第一个状态判定条件是F(x)<=F(a),就依赖于当前F(a),这样就不好),这样才可以最大限度的发挥记忆化的作用。

 Code

#include<cstdio>
#include<cstring>
using namespace std;
const int maxn = 1e4+5; int A, B, t, tot;
int a[12], dp[12][maxn];
int f(int x) {
int ans = 0, cnt = 0;
while(x){
ans += (x%10)*(1<<(cnt++));
x /= 10;
}
return ans;
}
int dfs(int pos, int sum, int limit) {
if(pos==0) return sum<=tot;
if(sum>tot) return 0;
if(!limit&&dp[pos][tot-sum]!=-1) return dp[pos][tot-sum];
int up = limit?a[pos]:9;
int ans = 0;
for(int i = 0; i <= up; i++)
ans += dfs(pos-1, sum+i*(1<<(pos-1)), limit&&i==a[pos]);
if(!limit) dp[pos][tot-sum] = ans;
return ans;
}
int solve(int x) {
int pos = 1;
while(x) {
a[pos++] = x%10;
x /= 10;
}
return dfs(pos-1, 0, 1);
}
int main()
{
int kase = 1;
memset(dp,-1,sizeof dp);
scanf("%d", &t);
while(t--) {
scanf("%d%d", &A, &B);
tot = f(A);
printf("Case #%d: %d\n", kase++, solve(B));
}
return 0;
}

参考文章:

https://www.cnblogs.com/AbandonZHANG/p/4114122.html

http://www.bubuko.com/infodetail-2320548.html

https://blog.csdn.net/wust_zzwh/article/details/52100392

https://www.cnblogs.com/herumw/p/9464514.html

[HDU4734] F(x)(数位dp+优化)的更多相关文章

  1. [hdu4734]F(x)数位dp

    题意:求0~f(b)中,有几个小于等于 f(a)的. 解题关键:数位dp #include<bits/stdc++.h> using namespace std; typedef long ...

  2. hdu4734 F(x)(数位dp)

    题目传送门 F(x) Time Limit: 1000/500 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  3. HDU-4734 F(x) 数位DP

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4734 注意到F(x)的值比较小,所以可以先预处理所有F(x)的组合个数.f[i][j]表示 i 位数时 ...

  4. 【hdu4734】F(x) 数位dp

    题目描述 对于一个非负整数 $x=​​\overline{a_na_{n-1}...a_2a_1}$ ,设 $F(x)=a_n·2^{n-1}+a_{n-1}·2^{n-2}+...+a_2·2^1+ ...

  5. hdoj4734(数位dp优化)

    题目链接:https://vjudge.net/problem/HDU-4734 题意:定义一个十进制数AnAn-1...A1的value为An*2n-1+...+A1*20,T组样例(<=1e ...

  6. hdu 4389 X mod f(x) 数位DP

    思路: 每次枚举数字和也就是取模的f(x),这样方便计算. 其他就是基本的数位Dp了. 代码如下: #include<iostream> #include<stdio.h> # ...

  7. HDU 4734 F(x) ★(数位DP)

    题意 一个整数 (AnAn-1An-2 ... A2A1), 定义 F(x) = An * 2n-1 + An-1 * 2n-2 + ... + A2 * 2 + A1 * 1,求[0..B]内有多少 ...

  8. hdu 4734 F(x)(数位dp+优化)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4734 题意:我们定义十进制数x的权值为f(x) = a(n)*2^(n-1)+a(n-1)*2(n-2 ...

  9. HDU 4734 - F(x) - [数位DP][memset优化]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4734 Time Limit: 1000/500 MS (Java/Others) Memory Lim ...

随机推荐

  1. 计算机考研复试真题 a+b(大数加法)

    题目描述 实现一个加法器,使其能够输出a+b的值. 输入描述: 输入包括两个数a和b,其中a和b的位数不超过1000位. 输出描述: 可能有多组测试数据,对于每组数据, 输出a+b的值. 示例1 输入 ...

  2. maven依赖与传递性依赖

    目录 依赖范围 传递性依赖 依赖调节 可选依赖 本文主要是针对<maven实战>书中关键知识点的学习记录,未免有纰漏或描述不到之处,建议购买阅读原书 首先贴出一个pom常见的一些元素释义 ...

  3. 【MySQL】SELECT语句 - 查询数据

    第4章 检索数据 文章目录 第4章 检索数据 1.SELECT语句 2.检索单个列 3.检索多个列 4.检索所有列 5.检索不同的行 6.限制结果 7.使用完全限定的表名 8.小结 简单记录 - My ...

  4. 同一个网段内所有服务器virtual_router_id设置相同的后果

    /var/log/messages中一直报的错 one or more VIP associated with VRID mismatch actual MASTER advert bogus VRR ...

  5. kubernets之服务的实现方式

    一  服务如何通过kubernetes集群的组件来实现其功能 1.1  节点上的所有的服务相关的功能实现都是通过节点上面的kube-proxy来实现的,服务提供了一个或者多个服务IP以及端口对客户端开 ...

  6. Ubuntu Terminal命令行新建仓库并推送到远程仓库

    通常情况下,在本地新建一个仓库之后,需要在远端网页端也新建一个空的同名仓库,然后将两者进行关联才能推送. 那有没有办法直接在命令行就完成从新建到推送的过程而不需要中间在网页端也操作一番呢?办法当然是有 ...

  7. STM32F207时钟系统解析

    在前几天的文章<晶振原理解析>中介绍了晶振如何产生时钟的,板子使用的是25M无源晶振,下文将介绍STM32F207的时钟系统如何将25M晶振时钟转换为120M系统主频时钟的. 01.时钟系 ...

  8. 1V转5V芯片,三个元件即可组成完整的稳压方案

    1V低电压要转成5V的电压,需要1V转5V的芯片,由于1V输入,所以不需要指望能输出多大的电流,压差和1V的供电电压意味着供电电流也是无法做大的了.一般1V转5V的输出电流在0MA-100mA,一般6 ...

  9. matlab图像处理程序大集合

    1.图像反转 MATLAB程序实现如下:I=imread('xian.bmp');J=double(I);J=-J+(256-1);                 %图像反转线性变换H=uint8( ...

  10. 转 3 jmeter的两种录制方法

      录制1-badboy(推荐) badboy是一款自动化测试工具,它可以完成简单的功能测试和性能测试.其实它是一款独立的测试工具,只不过它录制东西导出的格式适用于jmeter,所以我们经常把jmet ...