原文链接:http://blog.javachen.com/2014/06/24/tuning-in-mapreduce/

本文主要记录Hadoop 2.x版本中MapReduce参数调优,不涉及Yarn的调优。

Hadoop的默认配置文件(以cdh5.0.1为例):

说明:

在hadoop2中有些参数名称过时了,例如原来的mapred.reduce.tasks改名为mapreduce.job.reduces了,当然,这两个参数你都可以使用,只是第一个参数过时了

1. 操作系统调优

  • 增大打开文件数据和网络连接上限,调整内核参数net.core.somaxconn,提高读写速度和网络带宽使用率
  • 适当调整epoll的文件描述符上限,提高Hadoop RPC并发
  • 关闭swap。如果进程内存不足,系统会将内存中的部分数据暂时写入磁盘,当需要时再将磁盘上的数据动态换置到内存中,这样会降低进程执行效率
  • 增加预读缓存区大小。预读可以减少磁盘寻道次数和I/O等待时间
  • 设置openfile

2. Hdfs参数调优

2.1 core-default.xml:

hadoop.tmp.dir

  • 默认值: /tmp
  • 说明: 尽量手动配置这个选项,否则的话都默认存在了里系统的默认临时文件/tmp里。并且手动配置的时候,如果服务器是多磁盘的,每个磁盘都设置一个临时文件目录,这样便于mapreduce或者hdfs等使用的时候提高磁盘IO效率。

fs.trash.interval

  • 默认值: 0
  • 说明: 这个是开启hdfs文件删除自动转移到垃圾箱的选项,值为垃圾箱文件清除时间。一般开启这个会比较好,以防错误删除重要文件。单位是分钟。

io.file.buffer.size

  • 默认值:4096
  • 说明:SequenceFiles在读写中可以使用的缓存大小,可减少 I/O 次数。在大型的 Hadoop cluster,建议可设定为 65536 到 131072。

2.2 hdfs-default.xml:

dfs.blocksize

  • 默认值:134217728
  • 说明: 这个就是hdfs里一个文件块的大小了,CDH5中默认128M。太大的话会有较少map同时计算,太小的话也浪费可用map个数资源,而且文件太小namenode就浪费内存多。根据需要进行设置。

dfs.namenode.handler.count

  • 默认值:10
  • 说明:设定 namenode server threads 的数量,这些 threads 會用 RPC 跟其他的 datanodes 沟通。当 datanodes 数量太多时会发現很容易出現 RPC timeout,解決方法是提升网络速度或提高这个值,但要注意的是 thread 数量多也表示 namenode 消耗的内存也随着增加

3. MapReduce参数调优

包括以下节点:

  • 合理设置槽位数目
  • 调整心跳配置
  • 磁盘块配置
  • 设置RPC和线程数目
  • 启用批量任务调度

3.1 mapred-default.xml:

mapred.reduce.tasksmapreduce.job.reduces):

  • 默认值:1
  • 说明:默认启动的reduce数。通过该参数可以手动修改reduce的个数。

mapreduce.task.io.sort.factor

  • 默认值:10
  • 说明:Reduce Task中合并小文件时,一次合并的文件数据,每次合并的时候选择最小的前10进行合并。

mapreduce.task.io.sort.mb

  • 默认值:100
  • 说明: Map Task缓冲区所占内存大小。

mapred.child.java.opts

  • 默认值:-Xmx200m
  • 说明:jvm启动的子线程可以使用的最大内存。建议值-XX:-UseGCOverheadLimit -Xms512m -Xmx2048m -verbose:gc -Xloggc:/tmp/@taskid@.gc

mapreduce.jobtracker.handler.count

  • 默认值:10
  • 说明:JobTracker可以启动的线程数,一般为tasktracker节点的4%。

mapreduce.reduce.shuffle.parallelcopies

  • 默认值:5
  • 说明:reuduce shuffle阶段并行传输数据的数量。这里改为10。集群大可以增大。

mapreduce.tasktracker.http.threads

  • 默认值:40
  • 说明:map和reduce是通过http进行数据传输的,这个是设置传输的并行线程数。

mapreduce.map.output.compress

  • 默认值:false
  • 说明: map输出是否进行压缩,如果压缩就会多耗cpu,但是减少传输时间,如果不压缩,就需要较多的传输带宽。配合 mapreduce.map.output.compress.codec使用,默认是 org.apache.hadoop.io.compress.DefaultCodec,可以根据需要设定数据压缩方式。

mapreduce.reduce.shuffle.merge.percent

  • 默认值: 0.66
  • 说明:reduce归并接收map的输出数据可占用的内存配置百分比。类似mapreduce.reduce.shuffle.input.buffer.percen属性。

mapreduce.reduce.shuffle.memory.limit.percent

  • 默认值: 0.25
  • 说明:一个单一的shuffle的最大内存使用限制。

mapreduce.jobtracker.handler.count

  • 默认值: 10
  • 说明:可并发处理来自tasktracker的RPC请求数,默认值10。

mapred.job.reuse.jvm.num.tasksmapreduce.job.jvm.numtasks):

  • 默认值: 1
  • 说明:一个jvm可连续启动多个同类型任务,默认值1,若为-1表示不受限制。

mapreduce.tasktracker.tasks.reduce.maximum

  • 默认值: 2
  • 说明:一个tasktracker并发执行的reduce数,建议为cpu核数

4. 系统优化

4.1 避免排序

对于一些不需要排序的应用,比如hash join或者limit n,可以将排序变为可选环节,这样可以带来一些好处:

  • 在Map Collect阶段,不再需要同时比较partition和key,只需要比较partition,并可以使用更快的计数排序(O(n))代替快速排序(O(NlgN))
  • 在Map Combine阶段,不再需要进行归并排序,只需要按照字节合并数据块即可。
  • 去掉排序之后,Shuffle和Reduce可同时进行,这样就消除了Reduce Task的屏障(所有数据拷贝完成之后才能执行reduce()函数)。

4.2 Shuffle阶段内部优化

  1. Map端--用Netty代替Jetty
  2. Reduce端--批拷贝
  3. 将Shuffle阶段从Reduce Task中独立出来

5. 总结

在运行mapreduce任务中,经常调整的参数有:

  • mapred.reduce.tasks:手动设置reduce个数
  • mapreduce.map.output.compress:map输出结果是否压缩
    • mapreduce.map.output.compress.codec
  • mapreduce.output.fileoutputformat.compress:job输出结果是否压缩
    • mapreduce.output.fileoutputformat.compress.type
    • mapreduce.output.fileoutputformat.compress.codec

MapReduce参数调优的更多相关文章

  1. MapReduce任务参数调优(转)

    http://blog.javachen.com/2014/06/24/tuning-in-mapreduce/ 本文主要记录Hadoop 2.x版本中MapReduce参数调优,不涉及Yarn的调优 ...

  2. Spark Shuffle原理、Shuffle操作问题解决和参数调优

    摘要: 1 shuffle原理 1.1 mapreduce的shuffle原理 1.1.1 map task端操作 1.1.2 reduce task端操作 1.2 spark现在的SortShuff ...

  3. 大数据:Hive常用参数调优

    1.limit限制调整 一般情况下,Limit语句还是需要执行整个查询语句,然后再返回部分结果. 有一个配置属性可以开启,避免这种情况---对数据源进行抽样 hive.limit.optimize.e ...

  4. MapReduce内存调优

    内存调优 Hadoop处理数据时,出现内存溢出的处理方法?(内存调优) 1.Mapper/Reducer阶段JVM内存溢出(一般都是堆) 1)JVM堆(Heap)内存溢出:堆内存不足时,一般会抛出如下 ...

  5. MapReduce如何调优

    Map阶段优化 1.在代码书写时优化,如尽量避免在map端创建变量等,因为map端是循环调用的,创建变量会增加内存的消耗,尽量将创建变量放到setup方法中 2.配置调优,可以在集群配置和任务运行时进 ...

  6. Hbase和Hadoop的内存参数调优 + 前端控制台

    1.hadoop的内存配置调优 mapred-site.xml的内存调整 <property> <name>mapreduce.map.memory.mb</name&g ...

  7. 搭建 windows(7)下Xgboost(0.4)环境 (python,java)以及使用介绍及参数调优

    摘要: 1.所需工具 2.详细过程 3.验证 4.使用指南 5.参数调优 内容: 1.所需工具 我用到了git(内含git bash),Visual Studio 2012(10及以上就可以),xgb ...

  8. 【转】Windows下使用libsvm中的grid.py和easy.py进行参数调优

    libsvm中有进行参数调优的工具grid.py和easy.py可以使用,这些工具可以帮助我们选择更好的参数,减少自己参数选优带来的烦扰. 所需工具:libsvm.gnuplot 本机环境:Windo ...

  9. spark参数调优

    摘要 1.num-executors 2.executor-memory 3.executor-cores 4.driver-memory 5.spark.default.parallelism 6. ...

随机推荐

  1. 风炫安全WEB安全学习第二十四节课 利用XSS钓鱼攻击

    风炫安全WEB安全学习第二十四节课 利用XSS钓鱼攻击 XSS钓鱼攻击 HTTP Basic Authentication认证 大家在登录网站的时候,大部分时候是通过一个表单提交登录信息. 但是有时候 ...

  2. Sql Server Sum函数的特殊使用

    利用Sql Server的Sum函数开窗得到累计值 具体详解https://www.cnblogs.com/zhaoshujie/p/9594676.html 个人示例例子 DECLARE @Sale ...

  3. LeetCode144 二叉树的前序遍历

    给定一个二叉树,返回它的 前序 遍历. 示例: 输入: [1,null,2,3] 1 \ 2 / 3 输出: [1,2,3] 进阶: 递归算法很简单,你可以通过迭代算法完成吗? /** * Defin ...

  4. 【Flutter】可滚动组件之SingleChildScrollView

    前言 SingleChildScrollView类似于Android中的ScrollView,它只能接收一个子组件. 接口描述 const SingleChildScrollView({ Key ke ...

  5. python中列表的insert和append的效率对比

    python中insert和append方法都可以向列表中插入数据只不过append默认插入列表的末尾,insert可以指定位置插入元素. 我们来测试一下他俩插入数据的效率: 测试同时对一个列表进行插 ...

  6. 用 CSS background 实现刻度线的呈现

    有的时候,我们需要在网页中的进度条或某种度量计上呈现一条条的刻度线.例如这种: 简单的实现方式,大致有两种:一是用图片做背景,横向平铺线条图片:二是给每一块刻度区域平铺一个元素,然后用边线实现.身为一 ...

  7. linux下的命令自动补齐增强

    linux 7 下 安装 bash-completion 可以实现命令的参数的自动补齐

  8. MyBatis初级实战之六:一对多关联查询

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  9. 30分钟带你理解 Raft 算法

    为什么需要 Raft? Raft 是什么? Raft 的目标 前置条件:复制状态机 Raft 基础 Leader 选举(选举安全特性) 日志复制(Leader只附加.日志匹配) 安全 学习资料 使用 ...

  10. 在OpenDaylight controller上开发App

    安装环境:Ubuntu18.04 一.安装依赖 1. 安装JDK: sudo apt update sudo apt install openjdk-8-jdk-headless 选择默认的 JDK: ...