牛顿迭代法解非线性方程组(MATLAB版)
牛顿迭代法,又名切线法,这里不详细介绍,简单说明每一次牛顿迭代的运算:首先将各个方程式在一个根的估计值处线性化(泰勒展开式忽略高阶余项),然后求解线性化后的方程组,最后再更新根的估计值。下面以求解最简单的非线性二元方程组为例(平面二维定位最基本原理),贴出源代码:
1、新建函数fun.m,定义方程组
function f=fun(x);
%定义非线性方程组如下
%变量x1 x2
%函数f1 f2
syms x1 x2
f1 = sqrt((x1-4)^2 + x2^2)-sqrt(17);
f2 = sqrt(x1^2 + (x2-4)^2)-5;
f=[f1 f2];
2、新建dfun.m,求出一阶微分方程
function df=dfun(x);
f=fun(x);
df=[diff(f,'x1');diff(f,'x2')]; %雅克比矩阵
3、建立newton.m,执行牛顿迭代过程
clear;clc
format;
x0=[0 0]; % 迭代初始值
eps = 0.00001; % 定位精度要求
for i = 1:10
f = double(subs(fun(x0),{'x1' 'x2'},{x0(1) x0(2)}));
df = double(subs(dfun(x0),{'x1' 'x2'},{x0(1) x0(2)})); % 得到雅克比矩阵
x = x0 - f/df;
if(abs(x-x0) < eps)
break;
end
x0 = x; % 更新迭代结果
end
disp('定位坐标:');
x
disp('迭代次数:');
i
结果如下:
定位坐标:
x =
0.0000 -1.0000
迭代次数:
i =
4
牛顿迭代法解非线性方程组(MATLAB版)的更多相关文章
- OpenCASCADE解非线性方程组
OpenCASCADE解非线性方程组 eryar@163.com Abstract. 在科学技术领域里常常提出求解非线性方程组的问题,例如,用非线性函数拟合实验数据问题.非线性网络问题.几何上的曲线曲 ...
- 牛顿迭代法解指数方程(aX + e^x解 = b )
高中好友突然问我一道这样的问题,似乎是因为他们专业要做一个计算器,其中的一道习题是要求计算器实现这样的功能. 整理一下要求:解aX + e^X = b 方程.解方程精度要求0.01,给定方程只有一解, ...
- C语言实现牛顿迭代法解方程
利用迭代算法解决问题,需要做好以下三个方面的工作: 一.确定迭代变量 在可以用迭代算法解决的问题中,我们可以确定至少存在一个可直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量. 二.建立迭 ...
- Matlab-6:解非线性方程组newton迭代法
函数文件: function x=newton_Iterative_method(f,n,Initial) x0=Initial; tol=1e-11; x1=x0-Jacobian(f,n,x0)\ ...
- 【Java例题】4.4使用牛顿迭代法求方程的解
4. 使用牛顿迭代法求方程的解:x^3-2x-5=0区间为[2,3]这里的"^"表示乘方. package chapter4; public class demo4 { publi ...
- Python最小二乘法解非线性超定方程组
求解非线性超定方程组,网上搜到的大多是线性方程组的最小二乘解法,对于非线性方程组无济于事. 这里分享一种方法:SciPy库的scipy.optimize.leastsq函数. import numpy ...
- 华为OJ1964-求解立方根(牛顿迭代法)
一.题目描述 描述: 计算一个数字的立方根,不使用库函数. 函数原型double getCubeRoot(double input) 输入: 待求解参数 double类型 输出: 输出参数的立方根,保 ...
- 伪距定位算法(matlab版)
在各种伪距定位算法中,最小二乘法是一种比较简单而广泛的方法,该算法可以分为以下几步: 1.准备数据与设置初始值 这里准备数据,主要是对于各颗可见卫星,收集到它们在同一时刻的伪距测量值,计算测量值的各项 ...
- UVA 10428 - The Roots(牛顿迭代法)
UVA 10428 - The Roots option=com_onlinejudge&Itemid=8&page=show_problem&category=494& ...
随机推荐
- 039_go语言中的排序
代码演示: package main import "fmt" import "sort" func main() { strs := []string{&qu ...
- Zabbix5 对接 SAML 协议 SSO
Zabbix5 对接 SAML 协议 SSO 在 Zabbix5.0 开始已经支持 SAML 认证 官文文档: https://www.zabbix.com/documentation/current ...
- ALGEBRA-前言
“当你读一页不到一个小时的话,可能是你读太快了” 哈哈 可以 慢慢品
- 文章要保存为TXT文件,其中的图片要怎么办?Python帮你解决
前言 用 python 爬取你喜欢的 CSDN 的原创文章,保存为TXT文件,不仅查看不方便,而且还无法保存文章中的代码和图片. 今天教你制作成 PDF 慢慢看.万一作者的突然把号给删了,也会保存备份 ...
- C#LeetCode刷题之#501-二叉搜索树中的众数(Find Mode in Binary Search Tree)
问题 该文章的最新版本已迁移至个人博客[比特飞],单击链接 https://www.byteflying.com/archives/4086 访问. 给定一个有相同值的二叉搜索树(BST),找出 BS ...
- 图的DFS和BFS(邻接表)
用C++实现图的DFS和BFS(邻接表) 概述 图的储存方式有邻接矩阵和邻接表储存两种.由于邻接表的实现需要用到抽象数据结构里的链表,故稍微麻烦一些.C++自带的STL可以方便的实现List,使算 ...
- 对于python装饰器结合递归的进一步理解
对于python装饰器结合递归的进一步理解 代码如下: import functools def memoize(fn): print('start memoize') known = dict() ...
- MySQL查看数据存放位置
show global variables like "%datadir%";
- Golang gRPC学习(04): Deadlines超时限制
为什么要使用Deadlines 当我们使用gRPC时,gRPC库关系的是连接,序列化,反序列化和超时执行.Deadlines 允许gRPC客户端设置自己等待多长时间来完成rpc操作,直到出现这个错误 ...
- python使用mongodb--基础操作(增、删、改、查)
连接数据库 client = pymongo.MongoClient(host="127.0.0.1", port=6666) db = client['Media'] db.au ...