一、前言

ClickHouse是一个用于联机分析(OLAP)的列式数据库管理系统(DBMS);目前我们使用CH作为实时数仓用于统计分析,在做性能优化的时候使用了 物化视图 这一特性作为优化手段,本文主要分享物化视图的特性与如何使用它来优化ClickHouse的查询性能。

二、概念

数据库中的 视图(View) 指的是通过一张或多张表查询出来的 逻辑表 ,本身只是一段 SQL 的封装并 不存储数据

物化视图(Materialized View) 与普通视图不同的地方在于它是一个查询结果的数据库对象(持久化存储),非常趋近于表;物化视图是数据库中的预计算逻辑+显式缓存,典型的空间换时间思路,所以用得好的话,它可以避免对基础表的频繁查询并复用结果,从而显著提升查询的性能。

在传统关系型数据库中,Oracle、PostgreSQL、SQL Server等都支持物化视图,而作为MPP数据库的ClickHouse也支持该特性。

三、ClickHouse物化视图

ClickHouse中的物化视图可以挂接在任意引擎的基础表上,而且会自动更新数据,它可以借助 MergeTree 家族引擎(SummingMergeTree、Aggregatingmergetree等),得到一个实时的预聚合,满足快速查询;但是对 更新删除 操作支持并不好,更像是个插入触发器。

创建语法:

CREATE [MATERIALIZED] VIEW [IF NOT EXISTS] [db.]table_name [TO[db.]name] [ENGINE = engine] [POPULATE] AS SELECT ...

POPULATE 关键字决定了物化视图的更新策略:

  • 若有POPULATE 则在创建视图的过程会将源表已经存在的数据一并导入,类似于 create table ... as
  • 若无POPULATE 则物化视图在创建之后没有数据

ClickHouse 官方并不推荐使用populated,因为在创建视图过程中插入表中的数据并不会写入视图,会造成数据的丢失。

四、案例

4.1. 场景

假设有一个日志表 login_user_log 来记录每次登录的用户信息,现在需要按用户所属地为维度来统计每天的登录次数。

PS:这种 只有新增记录,没有更新删除的记录表就非常适合使用 物化视图 来优化统计性能

正常的聚合SQL如下:city为用户所属地,login_date为登录时间

select city, login_date, count(1) login_cnt
from login_user_log
group by city, login_date

增加 物化视图 后的架构如下图所示:

4.2. 建表

创建基础表:基础表使用 SummingMergeTree 引擎,进行预聚合处理

CREATE TABLE login_user_log_base
(
city String,
login_date Date,
login_cnt UInt32
)
ENGINE = SummingMergeTree()
ORDER BY (city, login_date)

SummingMergeTree表引擎主要用于只关心聚合后的数据,而不关心明细数据的场景,它能够在合并分区的时候按照预先定义的条件聚合汇总数据,将同一分组下的多行数据汇总到一行,可以显著的 减少存储空间并加快数据查询的速度

创建物化视图:用户在创建物化视图时,通过 AS SELECT ... 子句从源表中查询需要的列,十分灵活

CREATE MATERIALIZED VIEW if not exists login_user_log_mv
TO login_user_log_base
AS
SELECT city, login_date, count(1) login_cnt
from login_user_log
group by city, login_date

使用 TO 关键字关联 物化视图基础表,需要自己初始化历史数据。

4.3. 查询统计结果

使用物化视图查询

SELECT city, login_date, sum(login_cnt) cnt
from login_user_log_mv
group by city, login_date

注意:在使用物化视图(SummingMergeTree引擎)的时候,也需要按照聚合查询来写sql,因为虽然 SummingMergeTree 会自己预聚合,但是并不是实时的,具体执行聚合的时机并 不可控

总结

  1. 在创建 MV 表时,一定要使用 TO 关键字为 MV 表指定存储位置,否则不支持 嵌套视图(多个物化视图继续聚合一个新的视图)
  2. 在创建 MV 表时如果用到了多表联查,不能为连接表指定别名,如果多个连接表中存在同名字段,在连接表的查询语句中使用 AS 将字段名区分开
  3. 在创建 MV 表时如果用到了多表联查,只有当第一个查询的表有数据插入时,这个 MV 才会被触发
  4. 在创建 MV 表时不要使用 POPULATE 关键字,而是在 MV 表建好之后将数据手动导入 MV 表
  5. 在使用 MV 的聚合引擎时,也需要按照聚合查询来写sql,因为聚合时机不可控

扫码关注有惊喜!

ClickHouse性能优化?试试物化视图的更多相关文章

  1. 详解Oracle数据货场中三种优化:分区、维度和物化视图

    转 xiewmang 新浪博客 本文主要介绍了Oracle数据货场中的三种优化:对分区的优化.维度优化和物化视图的优化,并给出了详细的优化代码,希望对您有所帮助. 我们在做数据库的项目时,对数据货场的 ...

  2. HoloLens开发与性能优化实践

    HoloLens中国版终于于5月底在中国上市,同时国内的技术社区经过一年的成长也有了很大的扩张,越来越多的开发者开始进入了HoloLens开发领域,尝试着使用混合现实(Mixed Reality)技术 ...

  3. MySQL · 性能优化 · 条件下推到物化表

    MySQL · 性能优化 · 条件下推到物化表 http://mysql.taobao.org/monthly/2016/07/08/ 背景 MySQL引入了Materialization(物化)这一 ...

  4. Android应用性能优化系列视图篇——隐藏在资源图片中的内存杀手

    图片加载性能优化永远是Android领域中一个无法绕过的话题,经过数年的发展,涌现了很多成熟的图片加载开源库,比如Fresco.Picasso.UIL等等,使得图片加载不再是一个头疼的问题,并且大幅降 ...

  5. clickhouse物化视图

    今天来简单介绍一下clickhouse的物化视图 物化视图支持表引擎,数据保存形式由它的表引擎决定,创建物化视图的完整语法如下: create materialized view mv_log eng ...

  6. Oracle性能调优之物化视图用法简介

    目录 一.物化视图简介 二.实践:创建物化视图 一.物化视图简介 物化视图分类 物化视图分类,物化视图语法和as后面的sql分为: (1) 基于主键的物化视图(主键物化视图) (2)基于Rowid的物 ...

  7. SQL Server索引视图以(物化视图)及索引视图与查询重写

    本位出处:http://www.cnblogs.com/wy123/p/6041122.html 经常听Oracle的同学说起来物化视图,物化视图的作用之一就是可以实现查询重写,听起来有一种高大上的感 ...

  8. (转) Android开发性能优化简介

    作者:贺小令 随着技术的发展,智能手机硬件配置越来越高,可是它和现在的PC相比,其运算能力,续航能力,存储空间等都还是受到很大的限制,同时用户对手机的体验要求远远高于PC的桌面应用程序.以上理由,足以 ...

  9. 转载:SqlServer数据库性能优化详解

    本文转载自:http://blog.csdn.net/andylaudotnet/article/details/1763573 性能调节的目的是通过将网络流通.磁盘 I/O 和 CPU 时间减到最小 ...

随机推荐

  1. DOM事件对象用法

    分为三个阶段:事件捕获阶段.目标阶段.事件冒泡阶段. 事件捕获老版本浏览器(IE<=8)不支持,但是事件冒泡可以放心使用. 事件处理程序 一共四类写法,基本都见过,看下写法就知道怎么回事儿了. ...

  2. 教你玩转CSS Position(定位)

    CSS Position(定位) position 属性指定了元素的定位类型. position 属性的五个值: static relative fixed absolute sticky 元素可以使 ...

  3. Github Action 快速上手指南

    前言 各位读者,新年快乐,我是过了年匆忙赶回上海努力搬砖的蛮三刀. Github之前更新了一个Action功能(应该是很久以前了),可以实现很多自动化操作.用来替代用户自己设置的自动化脚本(比如:钩子 ...

  4. 图像仿射变换——MatLab代码实现

    这里先说一下我们的目的,最近在用Pix2Pix 做一个项目的时候,遇到了成对图像质量差,存在着特征不能对齐的问题,即A图与B图是一组成对图像,我们想要将A 图中的物体转化为B 图中的物体,但这个物体在 ...

  5. .NET gRPC 核心功能初体验,附Demo源码

    gRPC是高性能的RPC框架, 有效地用于服务通信(不管是数据中心内部还是跨数据中心). 由Google开源,目前是一个Cloud Native Computing Foundation(CNCF)孵 ...

  6. Redis缓存中的常见问题

    缓存穿透:是指查询一个Redis和数据库中都不存在的数据. 问题:查询一个Redis和数据库中都不存在的数据,大量请求去访问数据库,导致数据库宕机. 解决办法: 1.根据id查询,如果id是自增的,将 ...

  7. golang知识总结

    目录 1.slice扩容规则 2.内存寻址.内存对齐,go结构体内存对齐策略 3.go语言map类型分析 3.1 hash冲突 3.2 hash表扩容 3.3 go语言中的map结构是hash表. 3 ...

  8. MySQL注入流程

    目录 确认注入点 信息收集 数据获取 提权 写个MySQL注入流程的大纲,类似一份全局地图,能指导下一步工作.MySQL注入流程分为四步: 确认注入点 信息收集 数据获取 提权 确认注入点 参考:ht ...

  9. 【Arduino学习笔记01】关于Arduino引脚的一些笔记

    参考链接:https://www.yiboard.com/thread-831-1-1.html Arduino Uno R3 - 引脚图 Arduino Uno R3 - 详细参数 Arduino ...

  10. ElasticSearch(ES)使用Nested结构存储KV及聚合查询

    自建博客地址:https://www.bytelife.net,欢迎访问! 本文为博客同步发表文章,为了更好的阅读体验,建议您移步至我的博客 本文作者: Jeffrey 本文链接: https://w ...