题目戳我

\(\text{Solution:}\)

\[\sum_{i=1}^n \sum_{j=1}^n \rho(i)\rho(j)\rho(\gcd(i,j))
\]
\[=\sum_{d=1}^n \rho(d)\sum_{i=1}^n \sum_{j=1}^n \rho(i)\rho(j)\rho(\gcd(i,j))[\gcd(i,j)=d]
\]
\[=\sum_{d=1}^n \rho(d)\sum_{i=1}^\frac{n}{d}\sum_{j=1}^\frac{n}{d}\rho(i*d)\rho(j*d)[\gcd(i,j)=1]
\]
\[=\sum_{d=1}^n\rho(d) \sum_{k=1}^\frac{n}{d}\mu(k)\sum_{i=1}^\frac{n}{kd}\sum_{j=1}^\frac{n}{kd}\rho(i*kd)\rho(j*kd)
\]
\[=\sum_{T=1}^n\sum_{d|T} \rho(d)\mu(\frac{T}{d})\sum_{i=1}^\frac{n}{T}\sum_{j=1}^\frac{n}{T}\rho(i*T)\rho(j*T)
\]
\[=\sum_{T=1}^n \sum_{i=1}^\frac{n}{T}\sum_{j=1}^\frac{n}{T}\rho(i*T)\rho(j*T)
\]

\(\rho*\mu=1*1*\mu=1*e\)即值始终为\(1.\)

这题所学到的主要是线性筛约数个数\(\rho\):

前提:唯一分解定理 \(n=\prod_{i=1}^k p_i^{a_i},\rho(n)=\prod (a_i+1)\)

设\(g\)是最小质因数的次数,\(t\)是约数个数。

对于质数:显然\(g=1,t=2(1,p).\)

令\(n=i*p[j]:\)

若\(i\equiv 0\bmod p[j],g[n]=g[i]+1,t[n]=\frac{t[i]*(g[n]+1)}{g(n)}\)

否则\(g[n]=1,t[n]=t[i]*2.\)

解释:对于非质数的第二种情况,最小质因子次数一定是一个质数不必解释,而因子个数由于多了一个质因子,所以由上述唯一分解定理会使得原来的\(g\)变为两倍(多乘了一个\(c_p+1,c_p=1.\))

对于非质数的第一种情况,最小质因子一定是当前的\(p[j],\)所以最小质因子次数就是\(g[i]+1,\)而约数个数需要先把\(i\)的\(p[j]\)因子除尽再乘上当前的这个,实际上就是把\(c_{p[j]}\)加了一。

于是这题可以在不用 Dirichlet前缀和 的情况下做到\(O(n\ln n+n\ln n).\)

#include<bits/stdc++.h>
using namespace std;
const int MAXN=2e6;
int n,m,pp,vis[MAXN+1],cnt,p[MAXN+1],t[MAXN+1],g[MAXN+1],Tn[MAXN+1],Tm[MAXN+1],ans;
inline int add(int x,int y){return (x+y)%pp;}
inline int mul(int x,int y){return 1ll*x*y%pp;}
inline void predo(){
t[1]=1;
for(int i=2;i<=MAXN;++i){
if(!vis[i])p[++cnt]=i,g[i]=1,t[i]=2;
for(int j=1;j<=cnt&&i*p[j]<=MAXN;++j){
vis[i*p[j]]=1;
if(i%p[j]==0){
g[i*p[j]]=g[i]+1;
t[i*p[j]]=mul(t[i]/g[i*p[j]],(g[i*p[j]]+1));
break;
}
g[i*p[j]]=1;
t[i*p[j]]=t[i]<<1;
}
}
}
int main(){
scanf("%d%d%d",&n,&m,&pp);
predo();
if(n>m)swap(n,m);
for(int i=1;i<=n;++i)
for(int j=1;j<=n/i;++j)
Tn[i]=add(Tn[i],t[i*j]);
for(int i=1;i<=m;++i)
for(int j=1;j<=m/i;++j)
Tm[i]=add(Tm[i],t[i*j]);
for(int T=1;T<=n;++T)
ans=add(ans,mul(Tn[T],Tm[T]));
printf("%d\n",ans);
return 0;
}

【题解】「MCOI-02」Convex Hull 凸包的更多相关文章

  1. P6810 「MCOI-02」Convex Hull 凸包

    Link 一句话题意: 求出 \(\displaystyle\sum_{i=1}^{n}\sum_{j=1}^{m}\tau(i)\tau(j)\tau(gcd(i,j))\) 前置知识 \(diri ...

  2. 【题解】「UVA681」Convex Hull Finding

    更改了一下程序的错误. Translation 找出凸包,然后逆时针输出每个点,测试数据中没有相邻的边是共线的.多测. Solution 首先推销一下作者的笔记 由此进入>>> ( ...

  3. 【题解】「UVA11626」Convex Hull

    凸包模板题. 之前写过拿 Graham 算法求凸包的,为了不重复/多学点知识,那这次拿 Andrew 算法求凸包吧qaq *此文章所有图片均为作者手画. Andrew 算法 假设我们有这些点: 首先把 ...

  4. [GYM 100492A] Average Convex Hull 凸包好题

    大致题意: 给出一个点集,其中有一个点有相同的几率会被删除,求删除之后的点集够成的凸包上的点的平均数. 首先看到题目,可以考虑枚举删除的点,将其凸包上前后两点以及两点间凸包内所有点构建凸包,因为凸包内 ...

  5. Opencv Convex Hull (凸包)

    #include <iostream>#include <opencv2/opencv.hpp> using namespace std;using namespace cv; ...

  6. 2.2 convex hull凸包

    1.定义:一组平面上的点,求一个包含所有点的最小的凸多边形,就是凸包问题. 利用编程解决凸包问题,应该得到一组逆时针的顶点的顺序集合,在边上但不是顶点,则不包含在集合里. 2.机械的方法:将点所在的位 ...

  7. 题解 「THUPC 2017」小 L 的计算题 / Sum

    题目传送门 题目大意 给出 \(a_{1,2,...,n}\),对于 \(\forall k\in [1,n]\) ,求出: \[\sum_{i=1}^{n}a_i^k \] \(n\le 2\tim ...

  8. 凸包(Convex Hull)构造算法——Graham扫描法

    凸包(Convex Hull) 在图形学中,凸包是一个非常重要的概念.简明的说,在平面中给出N个点,找出一个由其中某些点作为顶点组成的凸多边形,恰好能围住所有的N个点. 这十分像是在一块木板上钉了N个 ...

  9. OpenCV入门之寻找图像的凸包(convex hull)

    介绍   凸包(Convex Hull)是一个计算几何(图形学)中的概念,它的严格的数学定义为:在一个向量空间V中,对于给定集合X,所有包含X的凸集的交集S被称为X的凸包.   在图像处理过程中,我们 ...

随机推荐

  1. Linux服务器关联Git,通过执行更新脚本实现代码同步

    1.在Linux服务器安装Git yum install git -y   tips: 卸载Git :  yum remove git   2.在Linux生成ssh key   1)创建用户 git ...

  2. uniapp 获取元素高度 距离顶部高度等

    let _this=this let height="" const query = uni.createSelectorQuery() query.select('#u-drop ...

  3. 02_套接字编程(socket抽象层)

    1.套接字概述 1.套接概述: 套接是进行网络通信的一种手段(socket) 2.套接字分类:         流式套接字(SOCK_STREAM): 传输层基于tcp协议进行通信         数 ...

  4. 浅谈Java 线程池原理及使用方式

    一.简介 什么是线程池? 池的概念大家也许都有所听闻,池就是相当于一个容器,里面有许许多多的东西你可以即拿即用.java中有线程池.连接池等等.线程池就是在系统启动或者实例化池时创建一些空闲的线程,等 ...

  5. postman -- 环境变量、全局变量使用

    背景: [登录接口]中会返回sign值,[学生金币充值接口]会则需要用到该sign值,因此把sign设置为环境或全局变量,便于其他接口调用. 1.请求登录接口,获取sign值: 2.把sign值添加至 ...

  6. oracle之三rman 备份

    rman 备份 7.1 归档方式下rman备份常用语法: 7.1.1 backup 备份 1)备份全库:1.1 RMAN> backup database format='/u01/myrman ...

  7. 如何把自己开发的项目上传到GitHub仓库或者码云仓库?

    首先你需要用你的邮箱去注册一个自己的GitHub仓库 or 码云仓库.然后确保你的电脑安装了git. 码云仓库:https://gitee.com/ GitHub:https://github.com ...

  8. 安装最新LAMP环境(CentOS7+PHP7.1.5+Mysql5.7)

    安装Apache&Nginx ①.升级一下yum源(不是必须的),升级会花点时间,需要选择的地方都选择都输入“y”即可 yum update ②. 安装Apache yum list |gre ...

  9. 记一次函数异常(getopt_long)

    前言 以下参考博客以及man手册. getopt_long函数,getopt_long函数包含了getopt函数的功能,并且还可以指定"长参数"(或者说长选项),与getopt函数 ...

  10. [LeetCode]11. 盛最多水的容器(双指针)

    题目 给定 n 个非负整数 a1,a2,...,an,每个数代表坐标中的一个点 (i, ai) .在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0).找出其中的两 ...