CSP-S2 2019 D1T3

考场上写了2h还是爆零……思维题还是写不来啊


思路分析

最开始可以想到最简单的贪心,从小到大枚举每个数字将其移动到最小的节点。但是通过分析样例后可以发现,一个数字在移动的过程中也可能有无关的边的删除,很难处理。显然直接贪心是不可能的。

分析删边对图的影响。可以发现,一条边删去之后,边两端的部分将不会产生任何影响。也就是说,两边的关系只有这一条边。于是还是之前那个贪心的想法,将边的问题转化为点的问题。现在来分析怎么求解。

具体实现

分析样例后可以发现以下性质:

  1. 若某数字要从某个节点的某条边离开,那么这条边一定是这个节点最先被选择的边
  2. 某数字要从某个节点的x边进入,从y边离开,那么x一定先于y被选择,并且这个节点的其它边不在x和y之间被选择
  3. 某数字要最终停在某个节点,那么这个数字通往这个节点的边一定是这个节点最后被选择的边

因此,对于每个节点,关于与其相连的边,有以下三种约束条件:

  1. 某条边最先被选择
  2. 某条边紧跟着另一条边被选择
  3. 某条边最后被选择

我们可以根据上面提到的性质,通过判断每个节点的约束条件是否有冲突来求解方案。

可以发现,对于每个节点,其所有出边构成一条偏序链,我们可以通过维护一个链表来保证约束条件没有冲突。接下来分析一个数字经过一条边会产生什么冲突。假设某数字从$x$到$y$经过了边$(u,v)$。

1.若$x=u$,即$(u,v)$为路径的起始边,$u$为路径的起点
  • $(u,v)$已经被其它数字沿相同方向走过,显然不能再走,不合法
  • $u$上的原数字已走出去,显然不能再走,不合法
  • 已经有数字搬运到$u$,即加上这条边后$u$的边将构成一条完整的偏序链,此时若有其它边不在这条偏序链上,因为要删去所有的边,不合法
2.若$v=y$,即$(u,v)$为路径的终边,$v$为路径的终点
  • $(u,v)$已经被其它数字沿相同方向走过,显然不能再走,不合法
  • $v$已有数字走入,显然不能再走,不合法
  • 已经有数字从$v$搬运出去,即加上这条边后$v$的边将构成一条完整的偏序链,此时若有其它边不在这条偏序链上,因为要删去所有的边,不合法
3.若$x!=u$且$v!=y$,即$(u,v)$为路径的中间部分
  • $(u,v)$已经被其它数字沿相同方向走过,显然不能再走,不合法
  • 加上这条边后$v$的边将构成一条完整的偏序链,此时若有其它边不在这条偏序链上,因为要删去所有的边,不合法
  • 加上这条边后构成的偏序链成为一个环,不合法

偏序链可以用链表O(1)维护。另外,可以发现,每次数字的转移要维护的是一些连续的节点的关系,因此可以用一遍dfsO(n)维护。加上枚举数字的O(n),总的时间复杂度O(n)。

细节比较多,注意不要漏点错点。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=2e3+100;
int T,n,tot;
int head[N],ver[2*N],Next[2*N];
int rev[N],pre[N],cnt1[N],cnt2[N],cnt3[N],from[N],to[N],p[N][N],header[N][N],tailer[N][N];
bool pd[N];
void add(int x,int y)
{
ver[++tot]=y,Next[tot]=head[x],head[x]=tot;
ver[++tot]=x,Next[tot]=head[y],head[y]=tot;
}
void check(int x,int root)//root就是数字的起点
{
for(int i=head[x],y=ver[i];i;i=Next[i],y=ver[i])
if(y!=pre[x])
{
pre[y]=x,pd[y]=1;
if(x!=root)
{
if(p[x][y]==x || !p[x][y])
pd[y]=0;
if(tailer[x][y]==from[x] && header[x][pre[x]]==to[x] && cnt1[x]*2+cnt2[x]+cnt3[x]-2>0)
pd[y]=0;
if(tailer[x][y]==pre[x])
pd[y]=0;
}//中间边
else
{
if(p[x][y]==x || !p[x][y])
pd[y]=0;
if(from[x] && tailer[x][y]==from[x] && cnt1[x]*2+cnt2[x]+cnt3[x]-1>0)
pd[y]=0;
}//起始边
pd[y]&=pd[x];//x不行y也不行
check(y,root);
}
if(x==root)
pd[x]=0;//起终点相同也不行
else
if(from[x] ||(to[x] && tailer[x][to[x]]==pre[x] && cnt1[x]*2+cnt2[x]+cnt3[x]-1>0))
pd[x]=0;//x作为终点
}
void clear()
{
memset(head,0,sizeof(head));
memset(Next,0,sizeof(Next));
memset(from,0,sizeof(from));//该节点上的数字从哪条边进来
memset(to,0,sizeof(to));//该节点上的数字从哪条边出去
memset(cnt1,0,sizeof(cnt1));//该节点还剩下几条双向没走过的边
memset(cnt2,0,sizeof(cnt2));//该节点还剩下几条单向出边
memset(cnt3,0,sizeof(cnt3));//该节点还剩下几条双向出边
memset(pd,0,sizeof(pd));//可行性
memset(p,0,sizeof(p));//-1表示没走过,0表示双向都走过,x表示以x为起点单向走过这条边,这里的初始化好像没什么用
memset(header,0,sizeof(header));//偏序链起始边
memset(tailer,0,sizeof(tailer));//偏序链终边
tot=0;
}
int main()
{
scanf("%d",&T);
while(T--)
{
clear();
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%d",&rev[i]);
for(int i=1,x,y;i<n;i++)
{
scanf("%d%d",&x,&y);
add(x,y);
cnt1[x]++,cnt1[y]++;
p[x][y]=p[y][x]=-1;
header[x][y]=tailer[x][y]=y,header[y][x]=tailer[y][x]=x;//初始值
}
for(int i=1,now;i<=n;i++)
{
for(int j=1;j<=n;j++)
pre[j]=0;
pd[rev[i]]=1;//初始值
check(rev[i],rev[i]);//dfs判断可行性
for(int j=1;j<=n;j++)
if(pd[j])
{
now=j;
break;
}//找到字典序最小的可行终点
printf("%d ",now);
from[now]=pre[now];
while(pre[now]!=rev[i])
{
if(p[pre[now]][now]==-1)
{
p[pre[now]][now]=p[now][pre[now]]=pre[now];
cnt1[now]--,cnt1[pre[now]]--,cnt3[now]++,cnt2[pre[now]]++;
}//双向没走过
else
{
p[pre[now]][now]=p[now][pre[now]]=0;
cnt2[now]--,cnt3[pre[now]]--;
}//反向走过
header[pre[now]][tailer[pre[now]][now]]=header[pre[now]][pre[pre[now]]];
tailer[pre[now]][header[pre[now]][pre[pre[now]]]]=tailer[pre[now]][now];//链表插入
now=pre[now];
}
if(p[pre[now]][now]==-1)
{
p[pre[now]][now]=p[now][pre[now]]=pre[now];
cnt1[now]--,cnt1[rev[i]]--,cnt3[now]++,cnt2[rev[i]]++;
}
else
{
p[pre[now]][now]=p[now][pre[now]]=0;
cnt2[now]--,cnt3[rev[i]]--;
}
to[rev[i]]=now;
}
puts("");
}
}

[CSP-S2019]树上的数 题解的更多相关文章

  1. CSP2019 树上的数 题解

    题面 这是一道典型的部分分启发正解的题. 所以我们先来看两个部分分. Part 1 菊花图 这应该是除了暴力以外最好想的一档部分分了. 如上图(节点上的数字已省略),如果我们依次删去边(2)(1)(3 ...

  2. [CSP day1T3]树上的数

    题面 题解 这道题由于是求字典序最小的,所以要贪心地枚举数字,然后找可以走到的编号最小的点,处理这条路径. 这条路径有一些特性. 以下是特别精炼的结论: 所以一旦选好了路径,这些边的先后顺序就被定死了 ...

  3. CCF CSP 201312-4 有趣的数

    CCF计算机职业资格认证考试题解系列文章为meelo原创,请务必以链接形式注明本文地址 CCF CSP 201312-4 有趣的数 问题描述 我们把一个数称为有趣的,当且仅当: 1. 它的数字只包含0 ...

  4. 【CSP2019】树上的数

    [CSP2019]树上的数 题面 洛谷 题解 我们设每个点上的编号分别为\(a_1,a_2...a_n\). 10pts ... 菊花 假设现在菊花中心编号是\(rt\),设你依次拆边\((p_1,r ...

  5. C#版 - Leetcode 504. 七进制数 - 题解

    C#版 - Leetcode 504. 七进制数 - 题解 Leetcode 504. Base 7 在线提交: https://leetcode.com/problems/base-7/ 题目描述 ...

  6. C#版 - Leetcode 306. 累加数 - 题解

    版权声明: 本文为博主Bravo Yeung(知乎UserName同名)的原创文章,欲转载请先私信获博主允许,转载时请附上网址 http://blog.csdn.net/lzuacm. C#版 - L ...

  7. C#版(打败97.89%的提交) - Leetcode 202. 快乐数 - 题解

    版权声明: 本文为博主Bravo Yeung(知乎UserName同名)的原创文章,欲转载请先私信获博主允许,转载时请附上网址 http://blog.csdn.net/lzuacm. C#版 - L ...

  8. BZOJ3930:[CQOI2015]选数——题解

    http://www.lydsy.com/JudgeOnline/problem.php?id=3930 https://www.luogu.org/problemnew/show/P3172#sub ...

  9. 洛谷P1037 产生数 题解 搜索

    题目链接:https://www.luogu.com.cn/problem/P1037 题目描述 给出一个整数 \(n(n<10^{30})\) 和 \(k\) 个变换规则 \((k \le 1 ...

随机推荐

  1. 美团Leaf——全局序列生成器

    Leaf的Github地址: https://github.com/Meituan-Dianping/Leaf Leaf美团技术团队博客地址: https://tech.meituan.com/201 ...

  2. PHP strcspn() 函数

    实例 输出在字符串 "Hello world!" 中找到字符 "w" 之前查找的字符数: <?php高佣联盟 www.cgewang.comecho st ...

  3. PHP str_rot13() 函数

    实例 编码并解码字符串: <?php高佣联盟 www.cgewang.comecho str_rot13("Hello World");echo "<br&g ...

  4. PHP printf() 函数

    实例 输出格式化的字符串: <?php高佣联盟 www.cgewang.com$number = 9;$str = "Beijing";printf("There ...

  5. MYSQL-MGR架构配置

    MGR安装:机器列表:pc-s4 s4 --2pc-s3 s3 --1pc-s1 s1 --1pc-s2 s2 --1 1,为初始化搭建,2,为后续添加 对1 三个数据库先进行初始化========= ...

  6. mysql 常用的数据类型

    数字类:  整数 tinyint     smallint    mediumint    int       bigint 浮点类:float  double 定点类:decimal(M,D) 日期 ...

  7. 在不同网段使用 VLAN 通信 - SVI,单臂路由

    在 VLAN 这篇文章中知道,设置 VLAN 目的是隔离大型的广播域,将其分成很小的广播域,从而更好的管理.但也就带来了一些问题:如流量不能在不同的 VLAN 间通信. 而为了解决这个问题,可以采用如 ...

  8. Android 的重要控件 ListView (听说是最难最常用的控件)

    这个打字有点慢了,左手受伤了,不过很幸运,左手小拇指没事(这就可以愉快地使用快捷键啦!),虽然有伤,但还是得坚持总结,不只是为自己,还为未来的你们铺路,希望我写的,对你们有帮助. 提前给自己一个祝福: ...

  9. Json字符串与QVariantList 对象相互转换

    在Qt中QVariantList 使用起来很方便,如果涉及到数据的传输,需要将QVariantList 数据转换为JsonArray字符串,这个转换Qt已经实现好了,只需要调用接口就可以完成转换,代码 ...

  10. 验证Kubernetes YAML的最佳实践和策略

    本文来自Rancher Labs Kubernetes工作负载最常见的定义是YAML格式的文件.使用YAML所面临的挑战之一是,它相当难以表达manifest文件之间的约束或关系. 如果你想检查所有部 ...