题目:http://uoj.ac/contest/23/problem/167

如果我们拿个map来存状态的话。设当前状态是v,下一个状态是s。有f[i+1][s]+=f[i][v]。 初始f[0][S]=1

答案就是∑f[i][T]

(说起来只要用了map这题也就不难啊TAT。。。

#include<string>
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<queue>
#include<map>
#include<vector>
#define rep(i,l,r) for (int i=l;i<=r;i++)
#define down(i,l,r) for (int i=l;i>=r;i--)
#define clr(x,y) memset(x,y,sizeof(x))
#define ll long long
#define maxn 109
#define mm 998244353
using namespace std;
vector<int> v;
int n,m,S[maxn],T[maxn],ans;
map<vector<int>,int> F[maxn];
int read(){
int x=,f=; char ch=getchar();
while (!isdigit(ch)){if (ch=='-') f=-; ch=getchar();}
while (isdigit(ch)){x=x*+ch-''; ch=getchar();}
return x*f;
}
void up(int &x){
if (x>mm) x-=mm;
}
int main(){
n=read(); m=read();
rep(i,,n) S[i]=read();
rep(i,,n) T[i]=read();
v.clear(); rep(i,,n) v.push_back(S[i]);
F[][v]=;
rep(i,,m-){
for (map<vector<int>,int>::iterator it=F[i].begin();it!=F[i].end();it++){
v=it->first;
int s[]={n+,n+,n+,n+};
down(k,n,) s[v[k-]]=k;
rep(A,,) if (s[A]!=n+){
rep(B,,) if (s[A]<s[B]){
v[s[A]-]=B; up(F[i+][v]+=it->second); v[s[A]-]=A;
}
}
}
}
v.clear(); rep(i,,n) v.push_back(T[i]);
ans=;
rep(i,,m) up(ans+=F[i][v]);
printf("%d\n",ans);
return ;
}

UR11 A.元旦老人与汉诺塔的更多相关文章

  1. [UOJ #167]【UR #11】元旦老人与汉诺塔

    题目大意:给你一个有$n$个盘子的汉诺塔状态$S$,问有多少种不同的操作方法,使得可以在$m$步以内到达状态$T$.$n,m\leqslant100$ 题解:首先可以知道的是,一个状态最多可以转移到其 ...

  2. uoj167 元旦老人与汉诺塔(记忆化搜索)

    QwQ太懒了,题目直接复制uoj的了 QwQ这个题可以说是十分玄学的一道题了 首先可以暴搜,就是\(dfs\)然后模拟每个过程是哪个柱子向哪个柱子移动 不多解释了,不过实现起来还是有一点点难度的 直接 ...

  3. 算法笔记_013:汉诺塔问题(Java递归法和非递归法)

    目录 1 问题描述 2 解决方案  2.1 递归法 2.2 非递归法 1 问题描述 Simulate the movement of the Towers of Hanoi Puzzle; Bonus ...

  4. C#递归解决汉诺塔问题(Hanoi)

    using System;using System.Collections.Generic;using System.Linq;using System.Text; namespace MyExamp ...

  5. 数据结构0103汉诺塔&八皇后

    主要是从汉诺塔及八皇后问题体会递归算法. 汉诺塔: #include <stdio.h> void move(int n, char x,char y, char z){ if(1==n) ...

  6. Conquer and Divide经典例子之汉诺塔问题

    递归是许多经典算法的backbone, 是一种常用的高效的编程策略.简单的几行代码就能把一团遭的问题迎刃而解.这篇博客主要通过解决汉诺塔问题来理解递归的精髓. 汉诺塔问题简介: 在印度,有这么一个古老 ...

  7. 几年前做家教写的C教程(之四专讲了指针与汉诺塔问题)

    C语言学习宝典(4) 指针:可以有效的表示复杂的数据结构,能动态的分配动态空间,方便的使用字符串,有效的使用数组,能直接处理内存单元 不掌握指针就没有掌握C语言的精华 地址:系统为每一个变量分配一个内 ...

  8. python实现汉诺塔

    经典递归算法汉诺塔分析: 当A柱子只有1个盘子,直接A --> C 当A柱子上有3个盘子,A上第一个盘子 --> B, A上最后一个盘子 --> C, B上所有盘子(1个) --&g ...

  9. fzu1036四塔问题(汉诺塔问题拓展)

    #include<iostream> #include<cstdio> #include<cmath> using namespace std; ]; int ru ...

随机推荐

  1. VR、AR、MR定义区别

    近日, 获得谷歌5亿美元融资的技术公司Magic Leap在WSJD展会中放出了一段实录视频,引起不小骚动.如今,也有媒体称他们为MR公司,那么VR.AR.MR之间到底有什么区别呢. VR.AR.MR ...

  2. 通过SQL创建一个有主键自动递增有默认值不为空有注释的表

    -- create database db_std_mgr_sys; use db_std_mgr_sys; create table student( std_id bigint not null ...

  3. 通过EntityFramework来操作MySQL数据库

    自己首次用到了EF,为了利人利己,故将自己今天学的记录下来. 这个项目要用到的工具是VS2015.MySQL5.7.12 . 首先我们先建一个解决方案,里面建两个项目分别是Silentdoer.Mai ...

  4. Wincc flexable的IO域组态

    1.题目 2.新建三个变量 3.组态画面,添加IO域1 1)常规设置 2)属性设置 4.组态IO域2 1)常规项 2)属性设置 5.组态第三个IO域 1)常规设置 2)属性设置 6.此外可以设置动画 ...

  5. lua中易混淆函数

    lua中易混淆的函数 ipairs和pairs: ipairs只能顺序遍历table,遇到key不是数字就会退出 pairs可以遍历table中所有元素 ----------------------- ...

  6. 重写JS的鼠标右键点击菜单

    重写JS的鼠标右键点击菜单 该效果主要有三点,一是对重写的下拉菜单的隐藏和显示:二是屏蔽默认的鼠标右键事件:三是鼠标左键点击页面下拉菜单隐藏. 不多说,上html代码: 1 <ul id=&qu ...

  7. Python学习(三):迭代器、生成器、装饰器、递归、算法、正则

    1.迭代器 迭代器是访问集合的一种方式,迭代对象从集合的第一个元素开始访问,直到元素被访问结束,迭代器只能往前不能后退,最大的优点是不要求事先准备好整个迭代过程中的元素,这个特点使得它特别适合用于遍历 ...

  8. Linux目录结构介绍-http://yangrong.blog.51cto.com/6945369/1288072

    1.树状目录结构图 2./目录 目录 描述 / 第一层次结构的根.整个文件系统层次结构的根目录. /bin/ 需要在单用户模式可用的必要命令(可执行文件):面向所有用户,例如:cat.ls.cp,和/ ...

  9. yum 命令详解

    一. yum          作用:                     yum 命令是在Fedora 和RedHat 以及SUSE 中基于rpm 的软件包管理器,它可以使系统管理人员交互和自动 ...

  10. MySQL: Integer & String types

    Type Storage(bytes) Minimum Value Maximum Value TINYINT 1 -128/0 127/255 SMALLINT 2 -23768/0 23767/6 ...