HDU 1014 Uniform Generator【GCD,水】
Uniform Generator
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 29336 Accepted Submission(s): 11694
seed(x+1) = [seed(x) + STEP] % MOD
where '%' is the modulus operator.
Such
a function will generate pseudo-random numbers (seed) between 0 and
MOD-1. One problem with functions of this form is that they will always
generate the same pattern over and over. In order to minimize this
effect, selecting the STEP and MOD values carefully can result in a
uniform distribution of all values between (and including) 0 and MOD-1.
For
example, if STEP = 3 and MOD = 5, the function will generate the series
of pseudo-random numbers 0, 3, 1, 4, 2 in a repeating cycle. In this
example, all of the numbers between and including 0 and MOD-1 will be
generated every MOD iterations of the function. Note that by the nature
of the function to generate the same seed(x+1) every time seed(x) occurs
means that if a function will generate all the numbers between 0 and
MOD-1, it will generate pseudo-random numbers uniformly with every MOD
iterations.
If STEP = 15 and MOD = 20, the function generates
the series 0, 15, 10, 5 (or any other repeating series if the initial
seed is other than 0). This is a poor selection of STEP and MOD because
no initial seed will generate all of the numbers from 0 and MOD-1.
Your program will determine if choices of STEP and MOD will generate a uniform distribution of pseudo-random numbers.
each line of input, your program should print the STEP value right-
justified in columns 1 through 10, the MOD value right-justified in
columns 11 through 20 and either "Good Choice" or "Bad Choice"
left-justified starting in column 25. The "Good Choice" message should
be printed when the selection of STEP and MOD will generate all the
numbers between and including 0 and MOD-1 when MOD numbers are
generated. Otherwise, your program should print the message "Bad
Choice". After each output test set, your program should print exactly
one blank line.
3 5 Good Choice 15 20 Bad Choice 63923 99999 Good Choice
下面解释一下为什么GCD是正解呢!
因为当GCD(step, mod) == 1的时候,那么第一次得到序列:x0, x0 + step, x0 + step…… 那么mod之后,必然下一次重复出现比x0大的数必然是x0+1,为什么呢?
因为(x0 + n*step) % mod; 且不需要考虑x0 % mod的值为多少,因为我们想知道第一次比x0大的数是多少,那么就看n*step%mod会是多少了,因为GCD(step, mod) == 1,那么n*step%mod必然是等于1,故此第一次重复出现比x0大的数必然是x0+1,那么第二次出现比x0大的数必然是x0+2,以此类推,就可得到必然会出现所有0到mod-1的数,然后才会重复出现x0.
当GCD(step, mod) != 1的时候,可以推出肯定跨过某些数了,这里不推了。
然后可以扩展这个结论,比如如果使用函数 x(n) = (x(n-1) * a + b)%mod;增加了乘法因子a,和步长b了;
那么如果是Good Choice,就必然需要GCD(a, mod) == 1,而且GCD(b, mod) == 1;
这里就偷懒不证明这个扩展结论了,而且证明这个结论需要用到线性模(Congruence)和乘法逆元的知识了。
下面给出AC代码:
#include <bits/stdc++.h>
using namespace std;
int gcd(int a,int b)
{
return b==?a:gcd(b,a%b);
}
int main()
{
int step,mod;
while(scanf("%d%d",&step,&mod)!=EOF)
{
if(gcd(step,mod)==)
printf("%10d%10d Good Choice\n\n",step,mod);
else
printf("%10d%10d Bad Choice\n\n",step,mod);
}
return ;
}
HDU 1014 Uniform Generator【GCD,水】的更多相关文章
- HDU 1014 Uniform Generator(模拟和公式)
传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1014 Uniform Generator Time Limit: 2000/1000 MS (Java ...
- HDU 1014:Uniform Generator
Uniform Generator Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- HDU 1014 Uniform Generator(题解)
Uniform Generator Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- HDU 1014 Uniform Generator 题解
找到规律之后本题就是水题了.只是找规律也不太easy的.证明这个规律成立更加不easy. 本题就是求step和mod假设GCD(最大公约数位1)那么就是Good Choice,否则为Bad Choic ...
- hdu 1014.Uniform Generator 解题报告
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1014 题目意思:给出 STEP 和 MOD,然后根据这个公式:seed(x+1) = [seed(x) ...
- HDU 1014 Uniform Generator 欧几里得
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1014 解题思路: 1. 把题目意思读懂后,明白会输入两个数,然后根据题中的公式产生一系列伪随机数,看这 ...
- hdu 1014 Uniform Generator 数论
摘取于http://blog.csdn.net/kenden23/article/details/37519883: 找到规律之后本题就是水题了,不过找规律也不太容易的,证明这个规律成立更加不容易. ...
- HDU 1014 Uniform Generator(最大公约数,周期循环)
#include<iostream> #include <cstdio> #include <cstring> using namespace std; int m ...
- HDOJ 1014 Uniform Generator(公约数问题)
Problem Description Computer simulations often require random numbers. One way to generate pseudo-ra ...
随机推荐
- iOS 网络状态判断方案(支持iOS11和iPhoneX)
在之前的iPhone中.我们可以根据导航栏上方的网络状态view.来判断网络状态.(这种方案本来就不太好) 这种方案在iPhone X 手机上.不可使用. 我们可以通过 Reachability 来 ...
- Android Weekly Notes Issue #288
Android Weekly Issue #288 December 17th, 2017 Android Weekly Issue #288 本期内容主要包括介绍Kotlin DSL使用kotlin ...
- C#打印杨辉三角
重主要的方法在于: 1.初始化二维数组 2.边界赋值 3.中心值赋值 4.输出 <pre name="code" class="csharp"> c ...
- bzoj 2002 HNOI 2010 弹飞绵羊
Description 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始,Lostmonkey在地上沿着一条直线摆上n个装置,每个装置 ...
- Mysql5.7.20 On Windows安装指导
安装环境 Windows版本:Windows10 64bit MySQL版本: MySQL5.7.20 配置过程 1.下载MySQL Community Server (下载链接) 根据自己操作系统需 ...
- python 嵌套字典比较值,取值
#取值import types allGuests = {'Alice': {'apples': 5, 'pretzels': {'12':{'beijing':456}}}, 'Bob': {'ha ...
- 安装spark单机环境
(假定已经装好的hadoop,不管你装没装好,反正我是装好了) 1 下载spark安装包 http://spark.apache.org/downloads.html 下载spark-1.6.1-bi ...
- 一个好用的PHOTOSHOP切图插件(CutterMan插件下载)
请关注CutterMan官方微博,分享本站点到自己微博中@Cutterman,私信TA,就有啦~~ 下载地址:http://www.cutterman.cn/ 也许你兴冲冲的下载了,然后发现安装不上, ...
- 设置状态栏(UIStatusBar)样式
方法1:找到项目里面的info.plist文件,添加属性Status bar style,设置属性值为transparent black style 状态条为白色 ,设置属性值为 gray style ...
- windows安装ipython的困难重重
本机环境 系统: windows 10 64位 python版本:3.2.1 安装过程 安装ipython可以使用python的pip工具 pip install ipython 在使用pip前,我准 ...