51 nod 1203 JZPLCM
第1行:两个整数,N, Q,中间用空格分隔,N为数列长度,Q为询问数量。(2 <= N, Q <= 50000)
第2 - N + 1行:每行1个整数,对应数列中的元素(1 <= S[i] <= 50000)
第N + 2 - N + Q + 1行:每行2个数,l, r,表示询问下标i在[l, r]范围内的S[i]的最小公倍数。(1 <= l <= r <= N)
输出共Q行,对应询问区间的最小公倍数Mod 10^9 + 7。
3 3
123
234
345
1 2
2 3
1 3
9594
26910
1103310 离线莫队,为了避免删数需要每次从当前块的终点跑到询问的左区间加数。
#include<cstdio>
#include<cstring>
#include<algorithm>
#define MN 50001
using namespace std;
int read_p,read_ca;
inline int read(){
read_p=;read_ca=getchar();
while(read_ca<''||read_ca>'') read_ca=getchar();
while(read_ca>=''&&read_ca<='') read_p=read_p*+read_ca-,read_ca=getchar();
return read_p;
}
const int MOD=1e9+;
const int K=;
struct na{
int l,r,k,p;
}Q[MN];
int n,m,A,p[MN],num=,bo[MN],_p[MN][],a[MN][],Nu[MN],l,r,mmh[MN],L,R,t[MN],_t[MN],MMH,_MMH;
inline bool cmp(na a,na b){return a.k==b.k?a.r<b.r:a.k<b.k;}
inline int mi(int a,int b){
int mmh=;
while (b){
if (b&) mmh=1LL*mmh*a%MOD;
b>>=;a=1LL*a*a%MOD;
}
return mmh;
}
inline void in(int x){for (register int i=;i<=Nu[x];i++) if (a[x][i]>t[_p[x][i]]) MMH=1LL*MMH*mi(p[_p[x][i]],a[x][i]-t[_p[x][i]])%MOD,t[_p[x][i]]=a[x][i];}
inline void work(int R,int x){
register int i,j;_MMH=MMH;
for (i=Q[x].l;i<=R;i++)
for (j=;j<=Nu[i];j++) if (a[i][j]>(_t[_p[i][j]]=_t[_p[i][j]]==?t[_p[i][j]]:_t[_p[i][j]])) _MMH=1LL*_MMH*mi(p[_p[i][j]],a[i][j]-_t[_p[i][j]])%MOD,_t[_p[i][j]]=a[i][j];
mmh[Q[x].p]=_MMH;
for (i=Q[x].l;i<=R;i++)
for (j=;j<=Nu[i];j++) _t[_p[i][j]]=;
}
int main(){
register int i,j;
for (i=;i<MN;i++){
if (!bo[i]) p[++num]=i,bo[i]=num;
for (j=;j<=num&&i*p[j]<MN;j++){
bo[i*p[j]]=j;
if (i%p[j]==) break;
}
}
n=read();m=read();
for (i=;i<=n;i++){
A=read();
while (A>){
if (bo[A]!=_p[i][Nu[i]]) _p[i][++Nu[i]]=bo[A];a[i][Nu[i]]++;A/=p[bo[A]];
}
}
for (i=;i<=m;i++)
Q[i].l=read(),Q[i].r=read(),Q[i].k=(Q[i].l-)/K,Q[i].p=i;
sort(Q+,Q++m,cmp);
r=;
for (i=;i<=(n-)/K;i++){
R=i*K+K;memset(t,,sizeof(t));MMH=;
while (Q[r].k==i&&r<=m){
if ((Q[r].r-)/K==i) work(Q[r].r,r);else{
while(R<=Q[r].r) in(R),R++;
work(i*K+K-,r);
}
r++;
}
}
for (i=;i<=m;i++) printf("%d\n",mmh[i]);
}
51 nod 1203 JZPLCM的更多相关文章
- 51 nod 1439 互质对(Moblus容斥)
1439 互质对 题目来源: CodeForces 基准时间限制:2 秒 空间限制:131072 KB 分值: 160 难度:6级算法题 有n个数字,a[1],a[2],…,a[n].有一个集合,刚开 ...
- 51 nod 1495 中国好区间
1495 中国好区间 基准时间限制:0.7 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 阿尔法在玩一个游戏,阿尔法给出了一个长度为n的序列,他认为,一段好的区间,它的长度是& ...
- 51 nod 1427 文明 (并查集 + 树的直径)
1427 文明 题目来源: CodeForces 基准时间限制:1.5 秒 空间限制:131072 KB 分值: 160 难度:6级算法题 安德鲁在玩一个叫“文明”的游戏.大妈正在帮助他. 这个游 ...
- 51 nod 1055 最长等差数列(dp)
1055 最长等差数列 基准时间限制:2 秒 空间限制:262144 KB 分值: 80 难度:5级算法题 N个不同的正整数,找出由这些数组成的最长的等差数列. 例如:1 3 5 6 8 9 ...
- 51 nod 1421 最大MOD值
1421 最大MOD值 题目来源: CodeForces 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 有一个a数组,里面有n个整数.现在要从中找到两个数字(可以 ...
- 51 nod 1681 公共祖先 (主席树+dfs序)
1681 公共祖先 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 有一个庞大的家族,共n人.已知这n个人的祖辈关系正好形成树形结构(即父亲向儿子连边). 在另 ...
- 51 nod 1766 树上的最远点对(线段树+lca)
1766 树上的最远点对 基准时间限制:3 秒 空间限制:524288 KB 分值: 80 难度:5级算法题 n个点被n-1条边连接成了一颗树,给出a~b和c~d两个区间,表示点的标号请你求出两个 ...
- 51 nod 1405 树的距离之和
1405 树的距离之和 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 给定一棵无根树,假设它有n个节点,节点编号从1到n, 求任意两点之间的距离(最短路径)之 ...
- 51 nod 1610 路径计数(Moblus+dp)
1610 路径计数 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 路径上所有边权的最大公约数定义为一条路径的值. 给定一个有向无环图.T次修改操作,每次修改一 ...
随机推荐
- 《Office 365 开发入门指南》公开邀请试读,欢迎反馈
终于等来了这一天,可以为我的这本新书画上一个句号.我记得是在今年的2月份从西雅图回来之后,就萌发了要为中国的Office 365开发人员写一些东西并最终能帮到更多中国用户的想法,而从2月26日正式写下 ...
- GVIM与模板——让FPGA开发变得更简单
还在使用FPGA开发环境自带的代码编辑器?还在逐个字母敲击冗长重复的代码?明德扬至简设计法让你快速提高代码编写效率!利用GVIM这一高效的编辑工具并添加自定义模板,通过简短的脚本命令即可自动生成所有常 ...
- Windows下RabbitMQ安装及入门
1.Windows下安装RabbitMQ需要以下几个步骤 (1):下载erlang,原因在于RabbitMQ服务端代码是使用并发式语言erlang编写的,下载地址:http://www.erlang. ...
- K:HashMap中hash函数的作用
在分析了hashCode方法和equals方法之后,我们对hashCode方法和equals方法的相关作用有了大致的了解.在通过查看HashMap类的相关源码的时候,发现其中存在一个int has ...
- PHP按行读取文件 去掉换行符"\n"
第一种: $content=str_replace("\n","",$content); echo $content; 或者: $content=str_rep ...
- C# 多线程传递多个参数
http://www.cnblogs.com/lvdongjie/p/5416883.html 3. 方式三:采用lambda表达式 对于lambda表达式不熟悉的可以查看微软MSDN上的说明文档.此 ...
- View学习(四)-View的绘制(draw)过程
View的draw过程相比之于measrue过程,也是比较简单的.并且在我们自定义View时,也经常需要重写onDraw方法,来绘制出我们要实现的效果. 如之前的文章所说,绘制的流程也是起始于View ...
- 使用@contextmanager装饰器实现上下文管理器
通常来说,实现上下文管理器,需要编写一个带有__enter__和 __exit__的类,类似这样: class ListTransaction: def __init__(self, orig_lis ...
- Linux入门篇(二)——文件
这一系列的Linux入门都是本人在<鸟哥的Linux私房菜>的基础上总结的基本内容,主要是记录下自己的学习过程,也方便大家简要的了解 Linux Distribution是Ubuntu而不 ...
- System.Windows.Forms.PropertyGrid的使用
PropertyGrid 控件简介 .NET 框架 PropertyGrid 控件是 Visual Studio .NET 属性浏览器的核心.PropertyGrid 控件显示对象或类型的属性,并主要 ...