第二个MapReduce
大家在学习Hadoop的MapReduce的时候,90%的第一个程序都是WordCount,所以在这里分享一下我的第二个MapReduce程序。对于学习编程语言的人来说,有时候代码是最好的沟通方式之一。
package com.zhongxin.mr; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat; import java.io.IOException;
import java.math.BigDecimal;
import java.util.regex.Pattern; /**
* 用户已收本息
* Created by DingYS on 2017/11/21.
*/
public class UserReceiveAmount { public static class Map extends Mapper<LongWritable,Text,Text,Text>{
private Text outKey = new Text();
private Text outValue = new Text();
private Pattern pattern = Pattern.compile(","); @Override
public void map(LongWritable key,Text value,Context context) throws IOException,InterruptedException{
// 利息
BigDecimal interest = new BigDecimal(0);
// 本金
BigDecimal capital = new BigDecimal(0);
String splits[] = pattern.split(String.valueOf(value));
String onwerType = splits[2];
String fundsDirection = splits[6];
String tradeType = splits[5];
String penaltyAmount = splits[15];
String tradeAmount = splits[7];
String tradeShare = splits[8];
String ownerCustomNo = splits[1];
if("USER".equals(onwerType) && "INCR".equals(fundsDirection) && !Pattern.matches("CURRENT_.*?",tradeType)){
if("INTEREST".equals(tradeType) && ("null".equals(penaltyAmount) || "".equals(penaltyAmount) ||"0.00".equals(penaltyAmount))){
interest =new BigDecimal(Double.parseDouble(tradeAmount)).setScale(2,BigDecimal.ROUND_HALF_UP);
}else{
interest = new BigDecimal(Double.parseDouble(tradeAmount)).subtract(new BigDecimal(Double.parseDouble(tradeShare))).setScale(2,BigDecimal.ROUND_HALF_UP);
capital = new BigDecimal(Double.parseDouble(tradeShare)).setScale(2,BigDecimal.ROUND_HALF_UP);
}
outKey.set(ownerCustomNo);
outValue.set(String.valueOf(interest) + pattern + String.valueOf(capital));
context.write(outKey,outValue);
}
}
} public static class Reduce extends Reducer<Text,Text,Text,Text>{ public void reduce(Text key,Iterable<Text> values,Context context) throws IOException,InterruptedException{
Text outValue = new Text();
BigDecimal interest = new BigDecimal(0);
BigDecimal capital = new BigDecimal(0);
for(Text value:values){
String[] splits = value.toString().split(",");
interest = interest.add(new BigDecimal(Double.parseDouble(splits[0]))).setScale(2,BigDecimal.ROUND_HALF_UP);
capital = capital.add(new BigDecimal(Double.parseDouble(splits[1]))).setScale(2,BigDecimal.ROUND_HALF_UP);
}
outValue.set(String.valueOf(interest) + "\t" + String.valueOf(capital));
context.write(key,outValue);
}
} public static void main(String[] args) throws Exception{
Configuration config = new Configuration();
Job job = Job.getInstance(config);
job.setJobName("userReceiveAmount");
job.setJarByClass(UserReceiveAmount.class); job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class); job.setMapperClass(Map.class);
job.setReducerClass(Reduce.class); job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class); FileInputFormat.addInputPath(job,new Path(args[0]));
FileOutputFormat.setOutputPath(job,new Path(args[1])); job.waitForCompletion(true); }
}
对于看懂mapReduce这个程序,有一个非常关键的点就是:map每次读取一行数据,相同key的数据进入到同一个reduce中。
上面是将统计结果输出到hdfs上,下面来一个输出到Hbase中的,请看码
package com.zhongxin.mr; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.client.Mutation;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil;
import org.apache.hadoop.hbase.mapreduce.TableReducer;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import java.io.IOException;
import java.math.BigDecimal;
import java.util.regex.Pattern; /**
* 用户已收本息
* Created by DingYS on 2017/11/21.
*/
public class UserReceiveAmount { public static class Map extends Mapper<LongWritable,Text,Text,Text>{
private Text outKey = new Text();
private Text outValue = new Text();
private Pattern pattern = Pattern.compile(","); @Override
public void map(LongWritable key,Text value,Context context) throws IOException,InterruptedException{
// 利息
BigDecimal interest = new BigDecimal(0);
// 本金
BigDecimal capital = new BigDecimal(0);
String splits[] = pattern.split(String.valueOf(value));
String onwerType = splits[2];
String fundsDirection = splits[6];
String tradeType = splits[5];
String penaltyAmount = splits[15];
String tradeAmount = splits[7];
String tradeShare = splits[8];
String ownerCustomNo = splits[1];
if("USER".equals(onwerType) && "INCR".equals(fundsDirection) && !Pattern.matches("CURRENT_.*?",tradeType)){
if("INTEREST".equals(tradeType) && ("null".equals(penaltyAmount) || "".equals(penaltyAmount) ||"0.00".equals(penaltyAmount))){
interest =new BigDecimal(Double.parseDouble(tradeAmount)).setScale(2,BigDecimal.ROUND_HALF_UP);
}else{
interest = new BigDecimal(Double.parseDouble(tradeAmount)).subtract(new BigDecimal(Double.parseDouble(tradeShare))).setScale(2,BigDecimal.ROUND_HALF_UP);
capital = new BigDecimal(Double.parseDouble(tradeShare)).setScale(2,BigDecimal.ROUND_HALF_UP);
}
outKey.set(ownerCustomNo);
outValue.set(String.valueOf(interest) + pattern + String.valueOf(capital));
context.write(outKey,outValue);
}
}
} public static class Reduce extends TableReducer<Text,Text,ImmutableBytesWritable> { ImmutableBytesWritable k = new ImmutableBytesWritable(); public void reduce(Text key,Iterable<Text> values,Context context) throws IOException,InterruptedException{
BigDecimal interest = new BigDecimal(0);
BigDecimal capital = new BigDecimal(0);
for(Text value:values){
String[] splits = value.toString().split(",");
interest = interest.add(new BigDecimal(Double.parseDouble(splits[0]))).setScale(2,BigDecimal.ROUND_HALF_UP);
capital = capital.add(new BigDecimal(Double.parseDouble(splits[1]))).setScale(2,BigDecimal.ROUND_HALF_UP);
}
String family = "info";
Put put = new Put(String.valueOf(key).getBytes());
put.addColumn(family.getBytes(),"interest".getBytes(),String.valueOf(interest).getBytes());
put.addColumn(family.getBytes(),"capital".getBytes(),String.valueOf(capital).getBytes());
k.set(key.getBytes());
context.write(k,put);
}
} public static void main(String[] args) throws Exception{
Configuration config = HBaseConfiguration.create();
Job job = Job.getInstance(config,"userReceiveAmount");
job.setJarByClass(UserReceiveAmount.class); FileInputFormat.addInputPath(job,new Path(args[0]));
job.setMapperClass(Map.class);
TableMapReduceUtil.initTableReducerJob("userReceiveAmount",Reduce.class,job); job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class); job.setOutputKeyClass(ImmutableBytesWritable.class);
job.setOutputValueClass(Text.class);
job.setOutputValueClass(Mutation.class); System.exit(job.waitForCompletion(true) ? 0 : 1); }
}
注意点:rowkey的类型需要是String,如果是Text,需要Text.toString()一下,Text中重写了toString()方法,经测试String.valueOf()也没问题
Put put = new Put(rowkey.getBytes());
第二个MapReduce的更多相关文章
- Hadoop入门第二篇-MapReduce学习
		
mapreduce是一种计算模型,是google的一篇论文向全世界介绍了MapReduce.MapReduce其实可以可以用多种语言编写Map或Reduce程序,因为hadoop是java写的,所以通 ...
 - 使用mapreduce计算环比的实例
		
最近做了一个小的mapreduce程序,主要目的是计算环比值最高的前5名,本来打算使用spark计算,可是本人目前spark还只是简单看了下,因此就先改用mapreduce计算了,今天和大家分享下这个 ...
 - MapReduce工作流多种实现方式
		
学习 hadoop,必不可少的就是编写 MapReduce 程序.当然,对于简单的分析程序,我们只需一个 MapReduce 任务就能搞定,然而对于比较复杂的分析程序,我们可能需要多个Job或者多个M ...
 - MapReduce多重MR如何实现
		
一.每次输出文件存在很烦人 // 判断output文件夹是否存在,如果存在则删除 Path path = new Path(otherArgs[1]);// 取第1个表示输出目录参数(第0个参数是输入 ...
 - Hadoop MapReduce编程学习
		
一直在搞spark,也没时间弄hadoop,不过Hadoop基本的编程我觉得我还是要会吧,看到一篇不错的文章,不过应该应用于hadoop2.0以前,因为代码中有 conf.set("map ...
 - hadoop2.2编程:使用MapReduce编程实例(转)
		
原文链接:http://www.cnblogs.com/xia520pi/archive/2012/06/04/2534533.html 从网上搜到的一篇hadoop的编程实例,对于初学者真是帮助太大 ...
 - MapReduce链接作业
		
对于简单的分析程序,我们只需一个MapReduce就能搞定,然而对于比较复杂的分析程序,我们可能需要多个Job或者多个Map或者Reduce进行计算.下面我们来说说多个Job或者多个MapReduce ...
 - mapreduce (五) MapReduce实现倒排索引 修改版 combiner是把同一个机器上的多个map的结果先聚合一次
		
(总感觉上一篇的实现有问题)http://www.cnblogs.com/i80386/p/3444726.html combiner是把同一个机器上的多个map的结果先聚合一次现重新实现一个: 思路 ...
 - MapReduce初级案例
		
1.数据去重 "数据去重"主要是为了掌握和利用并行化思想来对数据进行有意义的筛选.统计大数据集上的数据种类个数.从网站日志中计算访问地等这些看似庞杂的任务都会涉及数据去重.下面就 ...
 
随机推荐
- vDSP加速的应用
			
vDSP 是IOS提供一系列加速处理算法..在优化时可以考虑应用一二... 1.在项目中加入Accelerate.framework库 点开项目属性->Build Phases->Link ...
 - Android 常见知识整理(1)
			
Android Support V4, V7, V13的作用与用法 http://blog.csdn.net/hh2000/article/details/39718623 2. 开源项目 注解 ...
 - Andrid 高级程序员面试题
			
==========================20150518===================================一. Acitvity组件 1. 生命周期&kille ...
 - BZOJ-3040-最短路(road)
			
Description N个点,M条边的有向图,求点1到点N的最短路(保证存在).1<=N<=1000000,1<=M<=10000000 Input 第一行两个整数N.M,表 ...
 - MySQL锁类型以及子查询锁表问题、解锁
			
MySQL中select * for update锁表的范围 MySQL中select * for update锁表的问题 由于InnoDB预设是Row-Level Lock,所以只有「明确」的指定主 ...
 - Loadrunner检查点使用总结
			
在使用Loadrunner进行性能测试中,有时需要对性能测试中的功能是否全部正确进行判断.这里就需要用到“检查点”,本文总结了常用三种协议下检查点的使用方法,希望阅读本文后的小伙伴们能够掌握其使用方法 ...
 - tomcat启动报错Several ports (8080, 8009) required by Tomcat v6.0
			
tomcat启动报错 如下图: 问题:8080.8009端口已经被占用. 解决办法: 1.在命令提示符下,输入netstat -aon | findstr 8080 2.继续输入taskkill -F ...
 - win8在安装office visio2003出现“请求的操作需要提升”,解决方法
			
单击右键,然后以管理员身份运行即可
 - SAP开发快捷键
			
F1 帮助 F2 回车确认(在某些地方可用,比如ABAP) F3 返回 F4 选择输入项 F5 新增 F6 复制为... F7 全选 F8 选择 ...
 - Windows下命令(bat可用)
			
转自 http://blog.csdn.net/CDersTeam/article/details/51346911 gpedit.msc-–组策略 2. sndrec32---录音机 3. Nslo ...