Kosaraju算法是干什么的?

Kosaraju算法可以计算出一个有向图的强连通分量

• 什么是强连通分量?

在一个有向图中如果两个结点(结点v与结点w)在同一个环中(等价于v可通过有向路径到达w,w也可以到达v)它们两

个就是强连通的,所有互为强连通的点组成了一个集合,在一幅有向图中这种集合的数量就是这幅图的强连通分量的数量

• 怎么算??

第一步:计算出有向图 (G) 的反向图 (G反) 的逆后序排列(代码中有介绍)

第二步:在有向图 (G) 中进行标准的深度优先搜索,按照刚才计算出的逆后序排列顺序而非标准顺序,每次搜索访问的所有点即在同一强连通分量中

 class Kosaraju {
private Digraph G;
private Digraph reverseG; //反向图
private Stack<Integer> reversePost; //逆后续排列保存在这
private boolean[] marked;
private int[] id; //第v个点在几个强连通分量中
private int count; //强连通分量的数量
public Kosaraju(Digraph G) {
int temp;
this.G = G;
reverseG = G.reverse();
marked = new boolean[G.V()];
id = new int[G.V()];
reversePost = new Stack<Integer>(); makeReverPost(); //算出逆后续排列 for (int i = 0; i < marked.length; i++) { //重置标记
marked[i] = false;
} for (int i = 0; i < G.V(); i++) { //算出强连通分量
temp = reversePost.pop();
if (!marked[temp]) {
count++;
dfs(temp);
}
}
}
/*
* 下面两个函数是为了算出 逆后序排列
*/
private void makeReverPost() {
for (int i = 0; i < G.V(); i++) { //V()返回的是图G的节点数
if (!marked[i])
redfs(i);
}
} private void redfs(int v) {
marked[v] = true;
for (Integer w: reverseG.adj(v)) { //adj(v)返回的是v指向的结点的集合
if (!marked[w])
redfs(w);
}
reversePost.push(v); //在这里把v加入栈,完了到时候再弹出来,弹出来的就是逆后续排列
}
/*
* 标准的深度优先搜索
*/
private void dfs(int v) {
marked[v] = true;
id[v] = count;
for (Integer w: G.adj(v)) {
if (!marked[w])
dfs(w);
}
} public int count() { return count;}
}

• 为什么这样就可以算出强连通分量的数量?(稍微有些费解)

比如有这样一个图,它有五个强连通分量

我们需要证明在26行的dfs(temp)中找到的①全是点temp的强连通点,②且是它全部的强连通点

证明时不要忘了定义:v可通过有向路径到达w,w也可以到达v,则它俩强连通

先证明②:

用反证法,就假如对一个点(点w)深度优先搜索时有一个它的强连通点(点v)没找到。

如果没找到,那就说明 点v 已经在找其他点时标记过了,

点v 如果已经被标记过了,因为有一条 v  -> w 的有向路径,那 点w 肯定也被找过了,

那就不会对 点w 深度优先搜索了。

假设不成立     (*^ω^*)

再证明①:

对一个点(点w)深度优先搜索时找到了一个点(点v),说明有一条 w -> v 的有向路径,再证明有一条 v -> w 的路径就行了,

     证明有一条 v -> w 的路径,就相当于证明图G的反向图G反)有一条 w -> v 的有向路径,

     因为 点w 和 点v 满足那个 逆后序排列,而逆后序排列是在redfs(node)结束时将node加入栈,再从栈中弹出,

     那说明反向图的深度优先搜索中redfs(v)肯定在redfs(w)前就结束了

     那就是两种情况:

     ■ redfs(v)已经完了redfs(w)才开始

     ■ redfs(v)是在 redfs(w)开始之后结束之前 结束的,也就是redfs(v)是在redfs(w)内部结束的

       第一种情况不可能,因为 G反 有一条 v -> w 的路径(因为G有一条 w -> v 的路径),

     满足第二中情况即在 G反 中有一条 w -> v 的路径。

     终于证完了。。。。。。

完整代码:

 package practice;

 import java.util.ArrayList;
import java.util.Stack; public class TestMain {
public static void main(String[] args) {
Digraph a = new Digraph(13);
a.addEdge(0, 1);a.addEdge(0, 5);a.addEdge(2, 3);a.addEdge(2, 0);a.addEdge(3, 2);
a.addEdge(3, 5);a.addEdge(4, 3);a.addEdge(4, 2);a.addEdge(5, 4);a.addEdge(6, 0);
a.addEdge(6, 4);a.addEdge(6, 9);a.addEdge(7, 6);a.addEdge(7, 8);a.addEdge(8, 7);
a.addEdge(8, 9);a.addEdge(9, 10);a.addEdge(9, 11);a.addEdge(10, 12);a.addEdge(11, 4);
a.addEdge(11, 12);a.addEdge(12, 9); Kosaraju b = new Kosaraju(a);
System.out.println(b.count());
}
} class Kosaraju {
private Digraph G;
private Digraph reverseG; //反向图
private Stack<Integer> reversePost; //逆后续排列保存在这
private boolean[] marked;
private int[] id; //第v个点在几个强连通分量中
private int count; //强连通分量的数量
public Kosaraju(Digraph G) {
int temp;
this.G = G;
reverseG = G.reverse();
marked = new boolean[G.V()];
id = new int[G.V()];
reversePost = new Stack<Integer>(); makeReverPost(); //算出逆后续排列 for (int i = 0; i < marked.length; i++) { //重置标记
marked[i] = false;
} for (int i = 0; i < G.V(); i++) { //算出强连通分量
temp = reversePost.pop();
if (!marked[temp]) {
count++;
dfs(temp);
}
}
}
/*
* 下面两个函数是为了算出 逆后序排列
*/
private void makeReverPost() {
for (int i = 0; i < G.V(); i++) { //V()返回的是图G的节点数
if (!marked[i])
redfs(i);
}
} private void redfs(int v) {
marked[v] = true;
for (Integer w: reverseG.adj(v)) { //adj(v)返回的是v指向的结点的集合
if (!marked[w])
redfs(w);
}
reversePost.push(v); //在这里把v加入栈,完了到时候再弹出来,弹出来的就是逆后续排列
}
/*
* 标准的深度优先搜索
*/
private void dfs(int v) {
marked[v] = true;
id[v] = count;
for (Integer w: G.adj(v)) {
if (!marked[w])
dfs(w);
}
} public int count() { return count;}
}
/*
* 图
*/
class Digraph {
private ArrayList<Integer>[] node;
private int v;
public Digraph(int v) {
node = (ArrayList<Integer>[]) new ArrayList[v];
for (int i = 0; i < v; i++)
node[i] = new ArrayList<Integer>();
this.v = v;
} public void addEdge(int v, int w) { node[v].add(w);} public Iterable<Integer> adj(int v) { return node[v];} public Digraph reverse() {
Digraph result = new Digraph(v);
for (int i = 0; i < v; i++) {
for (Integer w : adj(i))
result.addEdge(w, i);
}
return result;
} public int V() { return v;} }

Kosaraju算法详解的更多相关文章

  1. BM算法  Boyer-Moore高质量实现代码详解与算法详解

    Boyer-Moore高质量实现代码详解与算法详解 鉴于我见到对算法本身分析非常透彻的文章以及实现的非常精巧的文章,所以就转载了,本文的贡献在于将两者结合起来,方便大家了解代码实现! 算法详解转自:h ...

  2. kmp算法详解

    转自:http://blog.csdn.net/ddupd/article/details/19899263 KMP算法详解 KMP算法简介: KMP算法是一种高效的字符串匹配算法,关于字符串匹配最简 ...

  3. 机器学习经典算法详解及Python实现--基于SMO的SVM分类器

    原文:http://blog.csdn.net/suipingsp/article/details/41645779 支持向量机基本上是最好的有监督学习算法,因其英文名为support vector  ...

  4. [转] KMP算法详解

    转载自:http://www.matrix67.com/blog/archives/115 KMP算法详解 如果机房马上要关门了,或者你急着要和MM约会,请直接跳到第六个自然段.    我们这里说的K ...

  5. 【转】AC算法详解

    原文转自:http://blog.csdn.net/joylnwang/article/details/6793192 AC算法是Alfred V.Aho(<编译原理>(龙书)的作者),和 ...

  6. KMP算法详解(转自中学生OI写的。。ORZ!)

    KMP算法详解 如果机房马上要关门了,或者你急着要和MM约会,请直接跳到第六个自然段. 我们这里说的KMP不是拿来放电影的(虽然我很喜欢这个软件),而是一种算法.KMP算法是拿来处理字符串匹配的.换句 ...

  7. EM算法详解

    EM算法详解 1 极大似然估计 假设有如图1的X所示的抽取的n个学生某门课程的成绩,又知学生的成绩符合高斯分布f(x|μ,σ2),求学生的成绩最符合哪种高斯分布,即μ和σ2最优值是什么? 图1 学生成 ...

  8. Tarjan算法详解

    Tarjan算法详解 今天偶然发现了这个算法,看了好久,终于明白了一些表层的知识....在这里和大家分享一下... Tarjan算法是一个求解极大强联通子图的算法,相信这些东西大家都在网络上百度过了, ...

  9. 安全体系(二)——RSA算法详解

    本文主要讲述RSA算法使用的基本数学知识.秘钥的计算过程以及加密和解密的过程. 安全体系(零)—— 加解密算法.消息摘要.消息认证技术.数字签名与公钥证书 安全体系(一)—— DES算法详解 1.概述 ...

随机推荐

  1. FFT_ad采样速率

    调用quartus的ip核测量频率和幅值,可以把程序分成四大部分.第一部分是AD采样模块,本次实验用的是ad828,最高采样率为70M, 根据奈贵斯特采样定律 Fs > 2Fc,即采样率要大于信 ...

  2. Android学习笔记-App初始启动界面实现

    android手机上的很多应用程序启动时都会先显示一个图片,作为该应用程序的开始,该图片转瞬即逝.这个图片一般都会用应用的图标,作为广告来用. 例如: 它的实现方式很简单,我们以一个测试APP为例,介 ...

  3. Android中的Activity

    Android四大组件 活动(Activity) 广播接收者(BroadCastReceiver) 服务(Service) 内容提供者(Contentprovider) Activity 先来看And ...

  4. easyui 菜单按钮&提示框

    <script type="text/javascript"> function updatePwd(){ alert('修改密码'); } </script&g ...

  5. 从Google Play下载应用并不安全,上千款监视软件伪装其中

    如果你认为在官方应用市场里下载app就觉得安全的话,小编可以负责任的回答你:"too young too simple,sometimes native" 今年4月,BankBot ...

  6. Java中常见数据结构List之ArrayList

    这里主要包含ArrayList和LinkedList, 然后再添加一个:CopyOnWriteArrayList 关于Java中的集合内容, 感觉都已经被写烂了, 我这里主要是做个复习, 再从扒下源代 ...

  7. Redis的部署及使用

    Redis Memcached与Redis的对比 Memcached: 优点: 1. 纯set get性能好 2. 开发都会用,易用简单 4. 可用于存放session 缺点: 1. 不支持持久化 2 ...

  8. centos7中firewall防火墙命令详解

    为了架设ss在vultr上买了一个日本的vps 用的是centos7的系统 防火墙是 firewall 捣鼓了两天 在这里总结一下. 如果小伙伴也准备在vultr上买vps  在注册是 可以使用这个优 ...

  9. 简单table分页

    html <table id="pagingTable"> <thead> <tr> <td> 第一列 </td> &l ...

  10. 【Linux】文件存储结构

    大部分的Linux文件系统(如ext2.ext3)规定,一个文件由目录项.inode和数据块组成: 目录项:包括文件名和inode节点号.  Inode:又称文件索引节点,包含文件的基础信息以及数据块 ...