Kosaraju算法详解
• Kosaraju算法是干什么的?
Kosaraju算法可以计算出一个有向图的强连通分量
• 什么是强连通分量?
在一个有向图中如果两个结点(结点v与结点w)在同一个环中(等价于v可通过有向路径到达w,w也可以到达v)它们两
个就是强连通的,所有互为强连通的点组成了一个集合,在一幅有向图中这种集合的数量就是这幅图的强连通分量的数量
• 怎么算??
第一步:计算出有向图 (G) 的反向图 (G反) 的逆后序排列(代码中有介绍)
第二步:在有向图 (G) 中进行标准的深度优先搜索,按照刚才计算出的逆后序排列顺序而非标准顺序,每次搜索访问的所有点即在同一强连通分量中
class Kosaraju {
private Digraph G;
private Digraph reverseG; //反向图
private Stack<Integer> reversePost; //逆后续排列保存在这
private boolean[] marked;
private int[] id; //第v个点在几个强连通分量中
private int count; //强连通分量的数量
public Kosaraju(Digraph G) {
int temp;
this.G = G;
reverseG = G.reverse();
marked = new boolean[G.V()];
id = new int[G.V()];
reversePost = new Stack<Integer>();
makeReverPost(); //算出逆后续排列
for (int i = 0; i < marked.length; i++) { //重置标记
marked[i] = false;
}
for (int i = 0; i < G.V(); i++) { //算出强连通分量
temp = reversePost.pop();
if (!marked[temp]) {
count++;
dfs(temp);
}
}
}
/*
* 下面两个函数是为了算出 逆后序排列
*/
private void makeReverPost() {
for (int i = 0; i < G.V(); i++) { //V()返回的是图G的节点数
if (!marked[i])
redfs(i);
}
}
private void redfs(int v) {
marked[v] = true;
for (Integer w: reverseG.adj(v)) { //adj(v)返回的是v指向的结点的集合
if (!marked[w])
redfs(w);
}
reversePost.push(v); //在这里把v加入栈,完了到时候再弹出来,弹出来的就是逆后续排列
}
/*
* 标准的深度优先搜索
*/
private void dfs(int v) {
marked[v] = true;
id[v] = count;
for (Integer w: G.adj(v)) {
if (!marked[w])
dfs(w);
}
}
public int count() { return count;}
}
• 为什么这样就可以算出强连通分量的数量?(稍微有些费解)
比如有这样一个图,它有五个强连通分量


我们需要证明在26行的dfs(temp)中找到的①全是点temp的强连通点,②且是它全部的强连通点
证明时不要忘了定义:v可通过有向路径到达w,w也可以到达v,则它俩强连通
先证明②:
用反证法,就假如对一个点(点w)深度优先搜索时有一个它的强连通点(点v)没找到。
如果没找到,那就说明 点v 已经在找其他点时标记过了,
但 点v 如果已经被标记过了,因为有一条 v -> w 的有向路径,那 点w 肯定也被找过了,
那就不会对 点w 深度优先搜索了。
假设不成立 (*^ω^*)
再证明①:
对一个点(点w)深度优先搜索时找到了一个点(点v),说明有一条 w -> v 的有向路径,再证明有一条 v -> w 的路径就行了,
证明有一条 v -> w 的路径,就相当于证明图G的反向图(G反)有一条 w -> v 的有向路径,
因为 点w 和 点v 满足那个 逆后序排列,而逆后序排列是在redfs(node)结束时将node加入栈,再从栈中弹出,
那说明反向图的深度优先搜索中redfs(v)肯定在redfs(w)前就结束了,
那就是两种情况:
■ redfs(v)已经完了redfs(w)才开始
■ redfs(v)是在 redfs(w)开始之后结束之前 结束的,也就是redfs(v)是在redfs(w)内部结束的
第一种情况不可能,因为 G反 有一条 v -> w 的路径(因为G有一条 w -> v 的路径),
满足第二中情况即在 G反 中有一条 w -> v 的路径。
终于证完了。。。。。。
完整代码:
package practice; import java.util.ArrayList;
import java.util.Stack; public class TestMain {
public static void main(String[] args) {
Digraph a = new Digraph(13);
a.addEdge(0, 1);a.addEdge(0, 5);a.addEdge(2, 3);a.addEdge(2, 0);a.addEdge(3, 2);
a.addEdge(3, 5);a.addEdge(4, 3);a.addEdge(4, 2);a.addEdge(5, 4);a.addEdge(6, 0);
a.addEdge(6, 4);a.addEdge(6, 9);a.addEdge(7, 6);a.addEdge(7, 8);a.addEdge(8, 7);
a.addEdge(8, 9);a.addEdge(9, 10);a.addEdge(9, 11);a.addEdge(10, 12);a.addEdge(11, 4);
a.addEdge(11, 12);a.addEdge(12, 9); Kosaraju b = new Kosaraju(a);
System.out.println(b.count());
}
} class Kosaraju {
private Digraph G;
private Digraph reverseG; //反向图
private Stack<Integer> reversePost; //逆后续排列保存在这
private boolean[] marked;
private int[] id; //第v个点在几个强连通分量中
private int count; //强连通分量的数量
public Kosaraju(Digraph G) {
int temp;
this.G = G;
reverseG = G.reverse();
marked = new boolean[G.V()];
id = new int[G.V()];
reversePost = new Stack<Integer>(); makeReverPost(); //算出逆后续排列 for (int i = 0; i < marked.length; i++) { //重置标记
marked[i] = false;
} for (int i = 0; i < G.V(); i++) { //算出强连通分量
temp = reversePost.pop();
if (!marked[temp]) {
count++;
dfs(temp);
}
}
}
/*
* 下面两个函数是为了算出 逆后序排列
*/
private void makeReverPost() {
for (int i = 0; i < G.V(); i++) { //V()返回的是图G的节点数
if (!marked[i])
redfs(i);
}
} private void redfs(int v) {
marked[v] = true;
for (Integer w: reverseG.adj(v)) { //adj(v)返回的是v指向的结点的集合
if (!marked[w])
redfs(w);
}
reversePost.push(v); //在这里把v加入栈,完了到时候再弹出来,弹出来的就是逆后续排列
}
/*
* 标准的深度优先搜索
*/
private void dfs(int v) {
marked[v] = true;
id[v] = count;
for (Integer w: G.adj(v)) {
if (!marked[w])
dfs(w);
}
} public int count() { return count;}
}
/*
* 图
*/
class Digraph {
private ArrayList<Integer>[] node;
private int v;
public Digraph(int v) {
node = (ArrayList<Integer>[]) new ArrayList[v];
for (int i = 0; i < v; i++)
node[i] = new ArrayList<Integer>();
this.v = v;
} public void addEdge(int v, int w) { node[v].add(w);} public Iterable<Integer> adj(int v) { return node[v];} public Digraph reverse() {
Digraph result = new Digraph(v);
for (int i = 0; i < v; i++) {
for (Integer w : adj(i))
result.addEdge(w, i);
}
return result;
} public int V() { return v;} }
Kosaraju算法详解的更多相关文章
- BM算法 Boyer-Moore高质量实现代码详解与算法详解
Boyer-Moore高质量实现代码详解与算法详解 鉴于我见到对算法本身分析非常透彻的文章以及实现的非常精巧的文章,所以就转载了,本文的贡献在于将两者结合起来,方便大家了解代码实现! 算法详解转自:h ...
- kmp算法详解
转自:http://blog.csdn.net/ddupd/article/details/19899263 KMP算法详解 KMP算法简介: KMP算法是一种高效的字符串匹配算法,关于字符串匹配最简 ...
- 机器学习经典算法详解及Python实现--基于SMO的SVM分类器
原文:http://blog.csdn.net/suipingsp/article/details/41645779 支持向量机基本上是最好的有监督学习算法,因其英文名为support vector ...
- [转] KMP算法详解
转载自:http://www.matrix67.com/blog/archives/115 KMP算法详解 如果机房马上要关门了,或者你急着要和MM约会,请直接跳到第六个自然段. 我们这里说的K ...
- 【转】AC算法详解
原文转自:http://blog.csdn.net/joylnwang/article/details/6793192 AC算法是Alfred V.Aho(<编译原理>(龙书)的作者),和 ...
- KMP算法详解(转自中学生OI写的。。ORZ!)
KMP算法详解 如果机房马上要关门了,或者你急着要和MM约会,请直接跳到第六个自然段. 我们这里说的KMP不是拿来放电影的(虽然我很喜欢这个软件),而是一种算法.KMP算法是拿来处理字符串匹配的.换句 ...
- EM算法详解
EM算法详解 1 极大似然估计 假设有如图1的X所示的抽取的n个学生某门课程的成绩,又知学生的成绩符合高斯分布f(x|μ,σ2),求学生的成绩最符合哪种高斯分布,即μ和σ2最优值是什么? 图1 学生成 ...
- Tarjan算法详解
Tarjan算法详解 今天偶然发现了这个算法,看了好久,终于明白了一些表层的知识....在这里和大家分享一下... Tarjan算法是一个求解极大强联通子图的算法,相信这些东西大家都在网络上百度过了, ...
- 安全体系(二)——RSA算法详解
本文主要讲述RSA算法使用的基本数学知识.秘钥的计算过程以及加密和解密的过程. 安全体系(零)—— 加解密算法.消息摘要.消息认证技术.数字签名与公钥证书 安全体系(一)—— DES算法详解 1.概述 ...
随机推荐
- Apache Kafka - 介绍
原文地址地址: http://blogxinxiucan.sh1.newtouch.com/2017/07/12/Apache-Kafka-介绍/ Apache Kafka教程 之 Apache Ka ...
- [Tyvj 1728] 普通平衡树
大名鼎鼎的板子题w 照例先贴题面 Describtion 您需要写一种数据结构(可参考题目标题),来维护一些数,其中需要提供以下操作:1. 插入x数2. 删除x数(若有多个相同的数,因只删除一个)3. ...
- Unity Shader入门精要读书笔记(一)序章
本系列的博文是笔者读<Unity Shader入门精要>的读书笔记,这本书的章节框架是: 第一章:着手准备. 第二章:GPU流水线. 第三章:Shader基本语法. 第四章:Shader数 ...
- C# 接口基础学习
什么是接口 接口,在表面上是由几个没有主体代码的方法.属性.索引器.事件,或者它们的组合的集合体,有唯一的名称,可以被类或结构或者其他接口所实现(或者也可以说继承).它在形式上可能是如下的样子: i ...
- [补档][Tvyj 1729]文艺平衡树
[Tvyj 1729]文艺平衡树 题目 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作:翻转一个区间,例如原有序序列是5 4 3 2 1,翻转区间是[2,4]的话,结 ...
- D重叠面积
Description zjahstu是个很厚道的ACMer,O(∩_∩)O~..特为大家准备水题一道.. 题目很简单,两个矩形,告诉你矩形1,矩形2的面积和他们的总面积,请你求两矩形重叠部分的面积. ...
- MySQL的MySQL 的JDBC的安装与使用
1.配置好环境,主要是安装mysql和下载连接需要的包(我用的是mysql-connector-java-5.1.3-rc-bin.jar) 2.注册驱动 Class.forName("c ...
- 以太网帧、TCP与UDP段以及IP数据报格式总结
传输层及其以下的机制由内核提供,是操作系统的一部分,应⽤层由⽤户进程提供应⽤层数据通过协议栈发到⽹络上时,每层协议都要加上⼀个数据⾸部(header),称为封装.不同的协议层对数据包有不同的称谓,在传 ...
- MySQL登录汇总
--MySQL登录汇总 --------------------2014/5/17 1. ERROR 1045错误ERROR 1045 (28000): Access denied for user ...
- TCP/IP、Http、Socket的区别与关系
--TCP/IP.Http.Socket的区别与关系 --------------------------------------2014/05/14 网络由下往上分为 物理层.数据链路层.网络层.传 ...