1、What is ggplot2

ggplot2基本要素

  • 数据(Data)和映射(Mapping)
  • 几何对象(Geometric)
  • 标尺(Scale)
  • 统计变换(Statistics)
  • 坐标系统(Coordinante)
  • 图层(Layer)
  • 分面(Facet)

这里将从这些基本要素对ggplot2进行介绍。

2、数据(Data)和映射(Mapping)

以R自带的钻石的数据为例,由于样本量十分巨大,我们随机取一个子集来画图。参考:https://www.plob.org/article/7264.html 的随机取样方法:

require(ggplot2)
data(diamonds)
set.seed(42)
small <- diamonds[sample(nrow(diamonds), 1000), ]
head(small)

画图实际上是把数据中的变量映射到图形属性上。以克拉(carat)数为X轴变量,价格(price)为Y轴变量。

p <- ggplot(data = small, mapping = aes(x = carat, y = price))

上面这行代码把数据映射X,Y坐标轴上,需要告诉ggplot2,这些数据要映射成什么样的几何对象,下面以散点为例:

p + geom_point()

几何对象将在下面的小节介绍,这一节,关注的是数据和图形属性之间的映射。

如果想将切工(cut)映射到形状属性。只需要:

p <- ggplot(data=small, mapping=aes(x=carat, y=price, shape=cut))
p+geom_point()

再比如我想将钻石的颜色(color)映射颜色属性:

p <- ggplot(data=small, mapping=aes(x=carat, y=price, shape=cut, colour=color))
p+geom_point()

3、几何对象(Geometric)

在上面的例子中,各种属性映射由ggplot函数执行,只需要加一个图层,使用geom_point()告诉ggplot要画散点,于是所有的属性都映射到散点上。

geom_point()完成的就是几何对象的映射,ggplot2提供了各种几何对象映射,如geom_histogram用于直方图,geom_bar用于画柱状图,geom_boxplot用于画箱式图等等。

不同的几何对象,要求的属性会有些不同,这些属性也可以在几何对象映射时提供,比如上一图,也可以用以下语法来画:

p <- ggplot(small)
p+geom_point(aes(x=carat, y=price, shape=cut, colour=color))

ggplot2支持图层,我通常把不同的图层中共用的映射提供给ggplot函数,而某一几何对象才需要的映射参数提供给geom_xxx函数。

这一小节我们来看一下各种常用的几何对象。

直方图

直方图最容易,提供一个x变量,画出数据的分布。

ggplot(small)+geom_histogram(aes(x=price))

柱状图

柱状图非常适合于画分类变量。在这里以透明度(clarity)变量为例。按照不同透明度的钻石的数目画柱状图。

ggplot(small)+geom_bar(aes(x=clarity))

柱状图两个要素,一个是分类变量,一个是数目,也就是柱子的高度。数目在这里不用提供,因为ggplot2会通过x变量计算各个分类的数目。

当然你想提供也是可以的,通过stat参数,可以让geom_bar按指定高度画图,比如以下代码:

ggplot()+geom_bar(aes(x=c(LETTERS[1:3]),y=1:3), stat="identity")

柱状图和直方图是很像的,直方图把连续型的数据按照一个个等长的分区(bin)来切分,然后计数,画柱状图。而柱状图是分类数据,按类别计数。

密度函数图

geom_density用于绘制密度函数图

ggplot(small)+geom_density(aes(x=price, colour=cut))

ggplot(small)+geom_density(aes(x=price,fill=clarity))
#colour:曲线的颜色,fill是往曲线下面填充颜色。

箱式图

ggplot(small)+geom_boxplot(aes(x=cut, y=price,fill=color))

geom_boxplot将数据映射到箱式图上,上面的代码按切工(cut)分类,对价格(price)变量画箱式图,再分开按照color变量填充颜色。

4、标尺(Scale)

前面我们已经看到了,画图就是在做映射,不管是映射到不同的几何对象上,还是映射各种图形属性。这一小节介绍标尺,在对图形属性进行映射之后,使用标尺可以控制这些属性的显示方式,比如坐标刻度,可能通过标尺,将坐标进行对数变换;比如颜色属性,也可以通过标尺,进行改变。

ggplot(small)+geom_point(aes(x=carat, y=price, shape=cut, colour=color))+scale_y_log10()+scale_colour_manual(values=rainbow(7))
#以数据(Data)和映射(Mapping)一节中所画散点图为例,将Y轴坐标进行log10变换,再自己定义颜色为彩虹色。

5、统计变换(Statistics)

统计变换对原始数据进行某种计算,然后在图上表示出来,例如对散点图上加一条回归线。

ggplot(small, aes(x=carat, y=price))+geom_point()+scale_y_log10()+stat_smooth()

这里就不按颜色、切工来分了,不然ggplot会按不同的分类变量分别做回归,图就很乱,如果我们需要这样做,我们可以使用分面,这个将在后面介绍。

这里,aes所提供的参数,就通过ggplot提供,而不是提供给geom_point,因为ggplot里的参数,相当于全局变量,geom_point()和stat_smooth()都知道x,y的映射,如果只提供给geom_point(),则相当于是局部变量,geom_point知道这种映射,而stat_smooth不知道。

6、坐标系统(Coordinante)

坐标系统控制坐标轴,可以进行变换,例如XY轴翻转,笛卡尔坐标和极坐标转换,以满足我们的各种需求。

坐标轴翻转由coord_flip()实现

ggplot(small)+geom_bar(aes(x=cut, fill=cut))+coord_flip()

而转换成极坐标可以由coord_polar()实现:

ggplot(small)+geom_bar(aes(x=factor(1), fill=cut))+coord_polar(theta="y")

这也是为什么之前介绍常用图形画法时没有提及饼图的原因,饼图实际上就是柱状图,只不过是使用极坐标而已,柱状图的高度,对应于饼图的弧度,饼图并不推荐,因为人类的眼睛比较弧度的能力比不上比较高度(柱状图)

还可以画靶心图:

ggplot(small)+geom_bar(aes(x=factor(1), fill=cut))+coord_polar()

以及风玫瑰图(windrose)

ggplot(small)+geom_bar(aes(x=clarity, fill=cut))+coord_polar()

 

7、图层(Layer)

photoshop流行的原因在于PS 3.0时引入图层的概念,ggplot的牛B之处在于使用+号来叠加图层,这堪称是泛型编程的典范。
在前面散点图上,我们已经见识过,加上了一个回归线拟合的图层。

ggplot(small, aes(x=carat, y=price))+geom_point()+scale_y_log10()+stat_smooth()

8、分面(Facet)

分面可以让我们按照某种给定的条件,对数据进行分组,然后分别画图。

在统计变换一节中,提到如果按切工分组作回归线,显然图会很乱,有了分面功能,我们可以分别作图。

ggplot(small, aes(x=carat, y=price))+geom_point(aes(colour=cut))+scale_y_log10() +facet_wrap(~cut)+stat_smooth()

How To Use ggplot in ggplot2?的更多相关文章

  1. R ggplot学习笔记1

    R 可视化学习笔记 记参数挺费劲的,还是用的时候查官方文档吧,现在记个大概就行吧~ 1.ggplot2分层次绘图 1.1 核心理念 把绘图与数据分离,把数据相关的绘图与数据无关的绘图分离,按图层作图. ...

  2. Python 资源大全中文版

    Python 资源大全中文版 我想很多程序员应该记得 GitHub 上有一个 Awesome - XXX 系列的资源整理.awesome-python 是 vinta 发起维护的 Python 资源列 ...

  3. [转]Python 资源大全中文版

    摘自:https://github.com/jobbole/awesome-python-cn 我想很多程序员应该记得 GitHub 上有一个 Awesome - XXX 系列的资源整理.awesom ...

  4. github上总结的python资源列表【转】

    Python 资源大全中文版 我想很多程序员应该记得 GitHub 上有一个 Awesome - XXX 系列的资源整理.awesome-python 是 vinta 发起维护的 Python 资源列 ...

  5. [转]awsome-python

    原文链接 Python 资源大全中文版 我想很多程序员应该记得 GitHub 上有一个 Awesome - XXX 系列的资源整理.awesome-python 是 vinta 发起维护的 Pytho ...

  6. 【python】Python 资源大全中文版

    申明:感谢原作者的整理与分享,本篇文章分享自:https://www.jianshu.com/p/9c6ae64a1bd7 GitHub 上有一个 Awesome - XXX 系列的资源整理,资源非常 ...

  7. python 库资源大全

    偶然的机会翻到这篇文章,很全面,来源:  Python 资源大全中文版       哪些 Python 库让你相见恨晚? 环境管理 管理 Python 版本和环境的工具 p:非常简单的交互式 pyth ...

  8. Python 资源大全

    我想很多程序员应该记得 GitHub 上有一个 Awesome - XXX 系列的资源整理.awesome-python 是 vinta 发起维护的 Python 资源列表,内容包括:Web框架.网络 ...

  9. Python resources

    我想很多程序员应该记得 GitHub 上有一个 Awesome - XXX 系列的资源整理.awesome-python 是 vinta 发起维护的 Python 资源列表,内容包括:Web框架.网络 ...

随机推荐

  1. 关于RunLoop

    首先我们要先认识一下这个RunLoop; NSRunLoop是Cocoa框架中的类,与之的Core Fundation 中CFRunLoopRef类. 这两者的区别是,前者不是线程安全的,而后者是线程 ...

  2. Laravel 开发笔记

    Laravel 4.2  鉴权使用加盐密码 刚开始接触laravel,发现laravel默认的鉴权模块密码并未加盐处理(密码由password_hash方法创建).所以自己琢磨着对密码加盐.像下面这样 ...

  3. 监听器如何获取Spring配置文件(加载生成Spring容器)

    Spring容器是生成Bean的工厂,我们在做项目的时候,会用到监听器去获取spring的配置文件,然后从中拿出我们需要的bean出来,比如做网站首页,假设商品的后台业务逻辑都做好了,我们需要创建一个 ...

  4. C#计算表达式(仿计算器功能)

    一.用MSScriptControl在C#中执行JavaScript代码javascript中有个eval方法用过的人都知道他的方便和强大之处.在C#中,我们也可以通过Com组件来执行一段javasc ...

  5. 一道面试题引发的对javascript类型转换的思考

    最近群里有人发了下面这题:实现一个函数,运算结果可以满足如下预期结果: add(1)(2) // 3 add(1, 2, 3)(10) // 16 add(1)(2)(3)(4)(5) // 15 对 ...

  6. .NET平台和开发.

  7. python服务器环境搭建(1)——本地服务器准备

    去年十月底到新公司上班,由于公司旧系统存在各种问题同时不便于扩展,而公司领导对17年寄予很大的期望,用户量.收入要上一个新台阶,我经过全面评估后,决定全部用python重构过,开发一个基于微服务架构的 ...

  8. Contains Duplicate II leetcode

    Given an array of integers and an integer k, find out whether there are two distinct indices i and j ...

  9. css3 的 calc()函数在布局中的使用----头部高度固定,页面正好占满一屏

    最近项目遇到一个布局需求,头部高度固定,页面需要刚好占满一屏幕. 如下示意图: 方法:使用calc .wrap{ position: relative; margin-left: 24px; marg ...

  10. .NET Core项目从xproj+project.json向csproj迁移简介

    3月7日,微软发布了Visual Studio 2017 RTM,与之一起发布的还有.NET Core Runtime 1.1.0以及.NET Core SDK 1.0.0,尽管这些并不是最新版,但也 ...