Description

Autumn和Bakser又在研究Gty的妹子序列了!但他们遇到了一个难题。
对于一段妹子们,他们想让你帮忙求出这之内美丽度∈[a,b]的妹子的美丽度的种类数。
为了方便,我们规定妹子们的美丽度全都在[1,n]中。
给定一个长度为n(1<=n<=100000)的正整数序列s(1<=si<=n),对于m(1<=m<=1000000)次询问“l,r,a,b”,每次输出sl…sr中,权值∈[a,b]的权值的种类数。

Input

第一行包括两个整数n,m(1<=n<=100000,1<=m<=1000000),表示数列s中的元素数和询问数。
第二行包括n个整数s1…sn(1<=si<=n)。
接下来m行,每行包括4个整数l,r,a,b(1<=l<=r<=n,1<=a<=b<=n),意义见题目描述。
保证涉及的所有数在C++的int内。
保证输入合法。

Output

对每个询问,单独输出一行,表示sl…sr中权值∈[a,b]的权值的种类数。

Sample Input

10 10
4 4 5 1 4 1 5 1 2 1
5 9 1 2
3 4 7 9
4 4 2 5
2 3 4 7
5 10 4 4
3 9 1 1
1 4 5 9
8 9 3 3
2 2 1 6
8 9 1 4

Sample Output

2
0
0
2
1
1
1
0
1
2

HINT

样例的部分解释:
5 9 1 2
子序列为4 1 5 1 2
在[1,2]里的权值有1,1,2,有2种,因此答案为2。
3 4 7 9
子序列为5 1
在[7,9]里的权值有5,有1种,因此答案为1。
4 4 2 5
子序列为1
没有权值在[2,5]中的,因此答案为0。
2 3 4 7
子序列为4 5
权值在[4,7]中的有4,5,因此答案为2。
建议使用输入/输出优化。
 
该题要求什么题目已经说得很清楚了。。。
把这个题再打一遍只不过是想在温习一下莫队算法还记不记得。。。
莫队算法果然是深入OIER的人心啊,感天动地我竟然还会打(不会打莫队真是愧对CJ前辈啊);
这个题的思想很巧妙。。。这题如果用树状数组来实现的话可以实现logn的转移和查询可以获得60分。。。
这个题的巧妙之处就是对值域进行分块!!!
这样的话莫队l和r指针移动时的转移是O(1)的,而每个询问的查询是sqrt(n)的;
查询的话还是用分快查询的常见套路,整块的直接加,不是整块的就暴力搞。。。
而出现次数的话开一个桶就可以实现了,类似HH的项链。。。
一开始l[i]成(i-1)*block了,忘了加1。。。。
附上代码:
 // MADE BY QT666
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<iostream>
#include<queue>
#include<set>
#include<cstdlib>
#include<cstring>
#include<string>
#include<ctime>
#define lson num<<1
#define rson num<<1|1
using namespace std;
typedef long long ll;
const int N=;
const int M=;
int gi()
{
int x=,flag=;
char ch=getchar();
while(ch<''||ch>''){if(ch=='-') flag=-;ch=getchar();}
while(ch>=''&&ch<='') x=x*+ch-'',ch=getchar();
return x*flag;
}
int n,m,a[N],block,pos[N],blockans[N],l[N],r[N],cnt,ans[M],tong[N];
struct ac
{
int l,r,L,R,id;
}q[M];
bool cmp(const ac &a,const ac &b)
{
if(pos[a.l]==pos[b.l]) return a.r<b.r;
return pos[a.l]<pos[b.l];
}
void pre()
{
for(int i=;i<=cnt;i++) l[i]=(i-)*block+,r[i]=i*block;
r[cnt]=n;
for(int i=;i<=n;i++) pos[i]=(i-)/block+;
}
void update(int x,int val) {tong[x]+=val;}
int query(int x,int y)
{
int sum=;
if(pos[x]==pos[y])
{
for(int i=x;i<=y;i++) if(tong[i]) sum++;
}
else
{
for(int i=x;i<=r[pos[x]];i++) if(tong[i]) sum++;
for(int i=l[pos[y]];i<=y;i++) if(tong[i]) sum++;
for(int i=pos[x]+;i<=pos[y]-;i++) sum+=blockans[i];
}
return sum;
}
void work()
{
for(int i=,l=,r=;i<=m;i++)
{
while(l>q[i].l) {l--;update(a[l],);if(tong[a[l]]==) blockans[pos[a[l]]]++;}
while(r<q[i].r) {r++;update(a[r],);if(tong[a[r]]==) blockans[pos[a[r]]]++;}
while(l<q[i].l) {update(a[l],-);if(tong[a[l]]==) blockans[pos[a[l]]]--;l++;}
while(r>q[i].r) {update(a[r],-);if(tong[a[r]]==) blockans[pos[a[r]]]--;r--;}
ans[q[i].id]=query(q[i].L,q[i].R);
}
}
int main()
{
n=gi(),m=gi();
for(int i=;i<=n;i++) a[i]=gi();
for(int i=;i<=m;i++) q[i].l=gi(),q[i].r=gi(),q[i].L=gi(),q[i].R=gi(),q[i].id=i;
block=(int)sqrt(n);
if(n%block==) cnt=n/block;
else cnt=n/block+;
pre();
sort(q+,q++m,cmp);
work();
for(int i=;i<=m;i++) printf("%d\n",ans[i]);
return ;
}
 

【bzoj3809】Gty的二逼妹子序列的更多相关文章

  1. [bzoj3809]Gty的二逼妹子序列/[bzoj3236][Ahoi2013]作业

    [bzoj3809]Gty的二逼妹子序列/[bzoj3236][Ahoi2013]作业 bzoj   bzoj 题目大意:一个序列,m个询问在$[l,r]$区间的$[x,y]$范围内的数的个数/种类. ...

  2. [bzoj3809]Gty的二逼妹子序列_莫队_分块

    Gty的二逼妹子序列 bzoj-3809 题目大意:给定一个n个正整数的序列,m次询问.每次询问一个区间$l_i$到$r_i$中,权值在$a_i$到$b_i$之间的数有多少个. 注释:$1\le n\ ...

  3. BZOJ3809: Gty的二逼妹子序列

    Description Autumn和Bakser又在研究Gty的妹子序列了!但他们遇到了一个难题.   对于一段妹子们,他们想让你帮忙求出这之内美丽度∈[a,b]的妹子的美丽度的种类数.   为了方 ...

  4. [BZOJ3809]Gty的二逼妹子序列[莫队+分块]

    题意 给出长度为 \(n\) 的序列,\(m\) 次询问,每次给出 \(l,r,a,b\) ,表示询问区间 \([l,r]\) 中,权值在 \([a,b]\) 范围的数的种类数. \(n\leq 10 ...

  5. bzoj3809 Gty的二逼妹子序列 & bzoj3236 [Ahoi2013]作业 莫队+分块

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=3809 https://lydsy.com/JudgeOnline/problem.php?id ...

  6. 2019.01.08 bzoj3809: Gty的二逼妹子序列(莫队+权值分块)

    传送门 题意:多组询问,问区间[l,r]中权值在[a,b]间的数的种类数. 看了一眼大家应该都知道要莫队了吧. 然后很容易想到用树状数组优化修改和查询做到O(mnlogamax)O(m\sqrt nl ...

  7. 【莫队算法】【权值分块】bzoj3809 Gty的二逼妹子序列

    如题. #include<cstdio> #include<algorithm> #include<cmath> using namespace std; int ...

  8. 【BZOJ3809/3236】Gty的二逼妹子序列 [Ahoi2013]作业 莫队算法+分块

    [BZOJ3809]Gty的二逼妹子序列 Description Autumn和Bakser又在研究Gty的妹子序列了!但他们遇到了一个难题. 对于一段妹子们,他们想让你帮忙求出这之内美丽度∈[a,b ...

  9. 【BZOJ-3809】Gty的二逼妹子序列 分块 + 莫队算法

    3809: Gty的二逼妹子序列 Time Limit: 80 Sec  Memory Limit: 28 MBSubmit: 1072  Solved: 292[Submit][Status][Di ...

  10. BZOJ 3809: Gty的二逼妹子序列

    3809: Gty的二逼妹子序列 Time Limit: 80 Sec  Memory Limit: 28 MBSubmit: 1387  Solved: 400[Submit][Status][Di ...

随机推荐

  1. 十二、Hadoop学习笔记————Hive的基本原理

    一般用户用CLI(命令行界面)接口,元数据库含有表结构 单用户.多用户.远程服务 生成db文件,只能单客户端使用数据库 多用户是最常用的使用模式 配置与多用户一致 数据格式用户自定义 所有的表都存于改 ...

  2. 机器学习实验一SVM分类实验

    一.实验目的和内容 (一)实验目的 1.熟悉支持向量机SVM(Support Vector Machine)模型分类算法的使用. 2.用svm-train中提供的代码框架(填入SVM分类器代码)用tr ...

  3. 初学者易上手的SSH-整合

    许久没更新博客了! spring还有一章aop(面向切面),我就没讲述了,你们可以去看下代理模式. 那么我们开始整合:struts2  2.3.4 ,hibernate 5.2.10 ,spring ...

  4. c语言贪吃蛇详解3.让蛇动起来

    c语言贪吃蛇详解3.让蛇动起来 前几天的实验室培训课后作业我布置了贪吃蛇,今天有时间就来写一下题解.我将分几步来教大家写一个贪吃蛇小游戏.由于大家c语言未学完,这个教程只涉及数组和函数等知识点. 上次 ...

  5. 项目实战5—企业级缓存系统varnish应用与实战

    企业级缓存系统varnish应用与实战 环境背景:随着公司业务快速发展,公司的电子商务平台已经聚集了很多的忠实粉丝,公司也拿到了投资,这时老板想通过一场类似双十一的活动,进行一场大的促销,届时会有非常 ...

  6. absolute和relative元素 设置百分比宽高的差异

    一般元素在页面所占的空间包括:magin border padding content.以前一直以为子元素设置百分比宽高都是以父元素的content值为基准计算的.但是当子元素的position不同时 ...

  7. mysql 双机热备注意事项

    上一篇文章已经介绍过    主从复制,   本文对主从复制只是简单描述,如对主从复制不清楚的,可以先看上一篇文章   主从复制  一:介绍 mysql版本:5.7.20 第一个主服服务器ip:192. ...

  8. ASP.NET Core中的OWASP Top 10 十大风险-跨站点脚本攻击 (XSS)

    不定时更新翻译系列,此系列更新毫无时间规律,文笔菜翻译菜求各位看官老爷们轻喷,如觉得我翻译有问题请挪步原博客地址 本博文翻译自: https://dotnetcoretutorials.com/201 ...

  9. HDU1284--完全背包

    钱币兑换问题 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Sub ...

  10. Linux 定期自动备份文件夹脚本

    根据网上代码改编而成,这个脚本分为两个文件,一个是执行文件backup.sh,另一个是备份项目文件backup.txt.backup.txt这个文件比较好理解,就是一个text文件,它的每一行表示一个 ...