BZOJ 2154: Crash的数字表格 [莫比乌斯反演]
2154: Crash的数字表格
Time Limit: 20 Sec Memory Limit: 259 MB
Submit: 2924 Solved: 1091
[Submit][Status][Discuss]
Description
今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple)。对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数。例如,LCM(6, 8) = 24。回到家后,Crash还在想着课上学的东西,为了研究最小公倍数,他画了一张N*M的表格。每个格子里写了一个数字,其中第i行第j列的那个格子里写着数为LCM(i, j)。一个4*5的表格如下: 1 2 3 4 5 2 2 6 4 10 3 6 3 12 15 4 4 12 4 20 看着这个表格,Crash想到了很多可以思考的问题。不过他最想解决的问题却是一个十分简单的问题:这个表格中所有数的和是多少。当N和M很大时,Crash就束手无策了,因此他找到了聪明的你用程序帮他解决这个问题。由于最终结果可能会很大,Crash只想知道表格里所有数的和mod 20101009的值。
Input
输入的第一行包含两个正整数,分别表示N和M。
Output
输出一个正整数,表示表格中所有数的和mod 20101009的值。
Sample Input
Sample Output
【数据规模和约定】
100%的数据满足N, M ≤ 10^7。
- f(i)为1<=x<=n,1<=y<=m且gcd(x,y)=i的数对(x,y)的个数
”很像,这个不是个数而是i*j的和,同样考虑莫比乌斯反演
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N=1e7+,MOD=;
inline int read() {
char c=getchar();
int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int n,m;
bool notp[N];int p[N];
ll s[N],mu[N];
void sieve(int n){
mu[]=;
for(int i=;i<=n;i++){
if(!notp[i]) p[++p[]]=i,mu[i]=-;
for(int j=;j<=p[]&&i*p[j]<=n;j++){
int t=i*p[j];
notp[t]=;
if(i%p[j]==){
mu[t]=;
break;
}
mu[t]=-mu[i];
}
}
for(ll i=;i<=n;i++)
s[i]=(s[i-]+(i*i*mu[i])%MOD)%MOD;
}
inline ll S(ll x,ll y){
return ((x*(x+)/)%MOD)*((y*(y+)/)%MOD)%MOD;
}
ll f(ll n,ll m){
ll ans=,r=;
for(ll d=;d<=n;d=r+){
r=min(n/(n/d),m/(m/d));
ans=(ans+(s[r]-s[d-])*S(n/d,m/d)%MOD)%MOD;
}
return ans;
}
int main() {
n=read();
m=read();
sieve(n);
if(n>m) swap(n,m);
ll ans=,r=;
for(ll d=;d<=n;d=r+){
r=min(n/(n/d),m/(m/d));
ans=(ans+f(n/d,m/d)*((r-d+)*(r+d)/)%MOD)%MOD;
}
printf("%lld",(ans+MOD)%MOD); }
BZOJ 2154: Crash的数字表格 [莫比乌斯反演]的更多相关文章
- [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块)
[BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块) 题面 求 \[\sum_{i=1}^{n} \sum_{j=1}^{m} \mathrm{lcm}(i,j)\] 分析 \[\su ...
- [bzoj 2693] jzptab & [bzoj 2154] Crash的数字表格 (莫比乌斯反演)
题目描述 TTT组数据,给出NNN,MMM,求∑x=1N∑y=1Mlim(x,y)\sum_{x=1}^N\sum_{y=1}^M lim(x,y)\newlinex=1∑Ny=1∑Mlim(x, ...
- BZOJ 2154 Crash的数字表格 ——莫比乌斯反演
求$\sum_{i=1}^n\sum_{j=1}^n lcm(i,j)$ 枚举因数 $ans=\sum_{d<=n} F(d) * d$ $F(d)$表示给定范围内两两$\sum_{gcd(i, ...
- 【BZOJ】2154: Crash的数字表格 莫比乌斯反演
[题意]给定n,m,求Σlcm(i,j),1<=i<=n,1<=j<=m,n,m<=10^7. [算法]数论(莫比乌斯反演) [题解] $$ans=\sum_{i\leq ...
- 【莫比乌斯反演】关于Mobius反演与lcm的一些关系与问题简化(BZOJ 2154 crash的数字表格&&BZOJ 2693 jzptab)
BZOJ 2154 crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b ...
- Bzoj 2154: Crash的数字表格(积性函数)
2154: Crash的数字表格 Time Limit: 20 Sec Memory Limit: 259 MB Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least ...
- 【刷题】BZOJ 2154 Crash的数字表格
Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如 ...
- 【bzoj2154】Crash的数字表格 莫比乌斯反演
题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如,LCM(6, ...
- ●BZOJ 2154 Crash的数字表格
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2154 题解: 莫比乌斯反演. 题意还是很清楚的,就不赘述了. 显然有 $ANS=\sum_{ ...
随机推荐
- Java学习之注解Annotation实现原理
前言: 最近学习了EventBus.BufferKinfe.GreenDao.Retrofit 等优秀开源框架,它们新版本无一另外的都使用到了注解的方式,我们使用在使用的时候也尝到不少好处,基于这种想 ...
- H5 Notes:Navigator Geolocation
H5的地理位置API可以帮助我们来获取用户的地理位置,经纬度.海拔等,因此我们可以利用该API做天气应用.地图服务等. Geolocation对象是我们获取地理位置用到的对象. 首先判断浏览器是否支持 ...
- ASP.NET(IIS)出现"没有为请求类型"GET"找到 HTTP 处理程序"
pasting 环 境:windows 2003 IIS6.0 程序支持:ASP.NET .NET版本:2.0.4.0 问 题:之前服务器上各大网站运行良好,今天突然出现:" ...
- js的OOP继承实现
以下视频截图均来自慕课网javascript深入浅出: 这里Student.prototype之所以使用create方法来创建,而不是直接赋Person.prototype的值,是因为如果使用赋值的话 ...
- 【中文分词】最大熵马尔可夫模型MEMM
Xue & Shen '2003 [2]用两种序列标注模型--MEMM (Maximum Entropy Markov Model)与CRF (Conditional Random Field ...
- scikit-learn预处理实例之一:使用FunctionTransformer选择列
本例展示怎样在一个管道中使用FunctionTransformer.如果你知道你的数据集的第一主成分与分类任务无关,你可以使用FunctionTransformer选取除PCA转化的数据的第一列之外的 ...
- NavisWorks Api 简单使用与Gantt
相信很多朋友在做BIM项目的时候.都有客户会提出项目计划,形象进度 等需求. 那么当前最主要的问题就是计划与BIM模型的关联问题.那么我在项目中是用户用Project软件编辑计划然后手动跟三维模型关联 ...
- C# - 多线程 之 异步编程
异步编程 同步编程,请求响应模型,同步化.顺序化.事务化. 异步编程,事件驱动模型,以 Fire and Forget 方式实现. 异步编程模式 -§- 异步编程模型 (APM) 模式: IAsyn ...
- java.lang.Class.isPrimitive()用法解析
一.概述: 此方法主要用来判断Class是否为原始类型(boolean.char.byte.short.int.long.float.double). 二.格式: Class.isPrimitive( ...
- MYSQL基础知识和操作(二).png