Luogu 1064 金明的预算方案 / CJOJ 1352 [NOIP2006] 金明的预算方案(动态规划)

Description

金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间。更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过N元钱就行”。今天一早,金明就开始做预算了,他把想买的物品分为两类:主件与附件,附件是从属于某个主件的,下表就是一些主件与附件的例子:

主件 附件

电脑 打印机,扫描仪

书柜 图书

书桌 台灯,文具

工作椅 无

如果要买归类为附件的物品,必须先买该附件所属的主件。每个主件可以有0个、1个或2个附件。附件不再有从属于自己的附件。金明想买的东西很多,肯定会超过妈妈限定的N元。于是,他把每件物品规定了一个重要度,分为5等:用整数1~5表示,第5等最重要。他还从因特网上查到了每件物品的价格(都是10元的整数倍)。他希望在不超过N元(可以等于N元)的前提下,使每件物品的价格与重要度的乘积的总和最大。

设第j件物品的价格为v[j],重要度为w[j],共选中了k件物品,编号依次为j1,j2,……,jk,则所求的总和为:

v[j1]*w[j1]+v[j2]*w[j2]+ …+v[jk]*w[jk]。(其中*为乘号)

请你帮助金明设计一个满足要求的购物单。

Input

输入的第1行,为两个正整数,用一个空格隔开:

N m (其中N(<32000)表示总钱数,m(<60)为希望购买物品的个数。)

从第2行到第m+1行,第j行给出了编号为j-1的物品的基本数据,每行有3个非负整数

v p q (其中v表示该物品的价格(v<10000),p表示该物品的重要度(1~5),q表示该物品是主件还是附件。如果q=0,表示该物品为主件,如果q>0,表示该物品为附件,q是所属主件的编号)

Output

输出只有一个正整数,为不超过总钱数的物品的价格与重要度乘积的总和的最大值(<200000)。

Sample Input

1000 5

800 2 0

400 5 1

300 5 1

400 3 0

500 2 0

Sample Output

2200

Http

Luogu:https://www.luogu.org/problem/show?pid=1064#sub

CJOJ:http://oj.changjun.com.cn/problem/detail/pid/1352

Source

动态规划

题目大意

依赖背包

解决思路

我们将主件与附件合在一起看作一组,设F[i][j]表示前i组花费j元钱的最大价值,每次枚举只选主件、主件+附件1、主件+附件2、主件+附件1+附件这三种情况,即可按照普通的背包问题解决。

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
using namespace std; class Item
{
public:
int value,cost;
Item()
{
value=cost=-1;//-1的时候表示还没有这个物品
}
void init(int a,int b)
{
value=a;
cost=b;
}
}; class MainItem
{
public:
Item Main;//主件
Item A[3];//附近
}; const int maxN=33000;
const int maxM=70;
const int inf=2147483647; int n,m;
int Map[maxM];
MainItem I[maxM];
int F[maxM][maxN]; int main()
{
int N=0;
cin>>n>>m;
for (int i=1;i<=m;i++)
{
int v,p,q;
cin>>v>>p>>q;
if (q==0)
{
N++;
Map[i]=N;
I[N].Main.init(v*p,v);
}
else
{
int vv=Map[q];
if (I[vv].A[1].value==-1)
I[vv].A[1].init(v*p,v);
else
I[vv].A[2].init(v*p,v);
}
}
memset(F,0,sizeof(F));
int Ans=0;
for (int i=1;i<=N;i++)
for (int j=0;j<=n;j++)
{
F[i][j]=F[i-1][j];
int c=I[i].Main.cost;
int v=I[i].Main.value;
int c1=I[i].A[1].cost;
int c2=I[i].A[2].cost;
int v1=I[i].A[1].value;
int v2=I[i].A[2].value;
if (j>=c)//注意要判断是否合法,因为可能出现没有附件或附件只有一个的情况
{
F[i][j]=max(F[i][j],F[i-1][j-c]+v);
}
if ((v1!=-1)&&(j>=c1+c))
F[i][j]=max(F[i][j],F[i-1][j-c1-c]+v+v1);
if ((v2!=-1))
{
if (j>=c2+c)
F[i][j]=max(F[i][j],F[i-1][j-c2-c]+v+v2);
if (j>=c+c1+c2)
F[i][j]=max(F[i][j],F[i-1][j-c-c1-c2]+v+v1+v2);
}
Ans=max(Ans,F[i][j]);
}
/*for (int i=1;i<=N;i++)
{
for (int j=0;j<=n;j++)
cout<<F[i][j]<<' ';
cout<<endl;
}*/
cout<<Ans<<endl;
return 0;
}

Luogu 1064 金明的预算方案 / CJOJ 1352 [NOIP2006] 金明的预算方案(动态规划)的更多相关文章

  1. [codevs1155][KOJ0558][COJ0178][NOIP2006]金明的预算方案

    [codevs1155][KOJ0558][COJ0178][NOIP2006]金明的预算方案 试题描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴 ...

  2. CJOJ 2171 火车站开饭店(树型动态规划)

    CJOJ 2171 火车站开饭店(树型动态规划) Description 政府邀请了你在火车站开饭店,但不允许同时在两个相连的火车站开.任意两个火车站有且只有一条路径,每个火车站最多有 50 个和它相 ...

  3. CJOJ 1070 【Uva】嵌套矩形(动态规划 图论)

    CJOJ 1070 [Uva]嵌套矩形(动态规划 图论) Description 有 n 个矩形,每个矩形可以用两个整数 a, b 描述,表示它的长和宽.矩形 X(a, b) 可以嵌套在矩形 Y(c, ...

  4. CJOJ 2040 【一本通】分组背包(动态规划)

    CJOJ 2040 [一本通]分组背包(动态规划) Description 一个旅行者有一个最多能用V公斤的背包,现在有n件物品,它们的重量分别是W1,W2,...,Wn,它们的价值分别为C1,C2, ...

  5. CJOJ 2307 【一本通】完全背包(动态规划)

    CJOJ 2307 [一本通]完全背包(动态规划) Description 设有n种物品,每种物品有一个重量及一个价值.但每种物品的数量是无限的,同时有一个背包,最大载重量为M,今从n种物品中选取若干 ...

  6. CJOJ 1071 【Uva】硬币问题(动态规划)

    CJOJ 1071 [Uva]硬币问题(动态规划) Description 有n种硬币,面值分别为v1, v2, ..., vn,每种都有无限多.给定非负整数S,可以选用多少个硬币,使得面值之和恰好为 ...

  7. MA8601升级版 PL2586|USB HUB 工控级芯片方案PL2586|可直接替代FE1.1S芯片方案

    MA8601升级版 PL2586|USB HUB 工控级芯片方案PL2586|可直接替代FE1.1S芯片方案 旺玖在2022年新推出的一款USB HUB 芯片其性能和参数可以完全替代FE1.1S,是M ...

  8. luogu 1064 金明的预算方案

    01背包 变形,有主附件的背包内则更改决策 original: 1) 不选   2)选,f[j-w[i]]+v[i] now :     1)不选   2)选主   3)主 附1  4)主 附2   ...

  9. NOIP2006金明的预算方案[DP 有依赖的背包问题]

    题目描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过N元钱就行”.今 ...

随机推荐

  1. 【java8】慎用java8的foreach循环

    虽然java8出来很久了,但是之前用的一直也不多,最近正好学习了java8,推荐一本书还是不错的<写给大忙人看的javase8>.因为学习了Java8,所以只要能用到的地方都会去用,尤其是 ...

  2. 汽车Vin码识别——可以嵌入到手机里的新OCR识别技术

              汽车Vin码识别(车架号识别),顾名思义,就是识别汽车的Vin码(车架号),汽车Vin码识别(车架号识别)利用的是OCR识别技术,支持视频流获取图像,自动触发识别,另外汽车Vin码 ...

  3. Boosting决策树:GBDT

    GBDT (Gradient Boosting Decision Tree)属于集成学习中的Boosting流派,迭代地训练基学习器 (base learner),当前基学习器依赖于上一轮基学习器的学 ...

  4. css3 linear-gradient渐变效果及兼容性处理

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  5. 跨域请求,jsonp

    其实跨域请求,只需要在请求的url后面加上callback=?即可. 提供以下两种获取跨域的ajax的写法,都是基于jQuery.都已经成功使用,兼容做到ie7,(ie6未测试);案例地址来自豆瓣开放 ...

  6. DDD理论学习系列(6)-- 实体

    DDD理论学习系列--案例及目录 1.引言 实体对应的英语单词为Entity.提到实体,你可能立马就想到了代码中定义的实体类.在使用一些ORM框架时,比如Entity Framework,实体作为直接 ...

  7. C# 并行任务——Parallel类

    一.Parallel类 Parallel类提供了数据和任务的并行性: 二.Paraller.For() Paraller.For()方法类似于C#的for循环语句,也是多次执行一个任务.使用Paral ...

  8. BinarySearchTree-二叉搜索树

    一.二叉搜索树的定义及性质 二叉查找树(Binary Search Tree),也称有序二叉树(ordered binary tree),排序二叉树(sorted binary tree),是指一棵空 ...

  9. [0] 分析 EntityName 时出错。 行 2,位置 *。

    1. 报错内容“若要在加载设计器前避免可能发生的数据丢失,必须纠正以下错误: ”   “分析 EntityName 时出错. 行 2,位置 *.” 2. 如图: 3. 解决方案:查看项目全路径,是否有 ...

  10. ECSHOP购物车页面显示商品简单描述

    1.这里说的商品简单描述,不是商品的详细信息,而是后台编辑商品时在“其他信息”标签栏填写的那个“商品简单描述”,即goods_brief字段 2.修改lib_order.php文件的get_cart_ ...