1.查看hadoop版本

[hadoop@ltt1 sbin]$ hadoop version
Hadoop 2.6.-cdh5.12.0
Subversion http://github.com/cloudera/hadoop -r dba647c5a8bc5e09b572d76a8d29481c78d1a0dd
Compiled by jenkins on --29T11:33Z
Compiled with protoc 2.5.
From source with checksum 7c45ae7a4592ce5af86bc4598c5b4
This command was run using /home/hadoop/hadoop260/share/hadoop/common/hadoop-common-2.6.-cdh5.12.0.jar

2.通过hadoop自带的jar文件,可以简单测试一些功能。

提君博客原创

查看hadoop-mapreduce-examples-2.6.0-cdh5.12.0.jar文件所支持的MapReduce功能列表

[hadoop@ltt1 sbin]$ hadoop jar $HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6.-cdh5.12.0.jar
An example program must be given as the first argument.
Valid program names are:
aggregatewordcount: An Aggregate based map/reduce program that counts the words in the input files.
aggregatewordhist: An Aggregate based map/reduce program that computes the histogram of the words in the input files.
bbp: A map/reduce program that uses Bailey-Borwein-Plouffe to compute exact digits of Pi.
dbcount: An example job that count the pageview counts from a database.
distbbp: A map/reduce program that uses a BBP-type formula to compute exact bits of Pi.
grep: A map/reduce program that counts the matches of a regex in the input.
join: A job that effects a join over sorted, equally partitioned datasets
multifilewc: A job that counts words from several files.
pentomino: A map/reduce tile laying program to find solutions to pentomino problems.
pi: A map/reduce program that estimates Pi using a quasi-Monte Carlo method.
randomtextwriter: A map/reduce program that writes 10GB of random textual data per node.
randomwriter: A map/reduce program that writes 10GB of random data per node.
secondarysort: An example defining a secondary sort to the reduce.
sort: A map/reduce program that sorts the data written by the random writer.
sudoku: A sudoku solver.
teragen: Generate data for the terasort
terasort: Run the terasort
teravalidate: Checking results of terasort
wordcount: A map/reduce program that counts the words in the input files.
wordmean: A map/reduce program that counts the average length of the words in the input files.
wordmedian: A map/reduce program that counts the median length of the words in the input files.
wordstandarddeviation: A map/reduce program that counts the standard deviation of the length of the words in the input files.

3.在hdfs上创建文件夹

hadoop fs -mkdir /input

4.查看hdfs的更目录列表

[hadoop@ltt1 ~]$ hadoop fs -ls /
Found 2 items
drwxr-xr-x - hadoop supergroup 0 2017-09-17 08:11 /input
drwx------ - hadoop supergroup 0 2017-09-17 08:07 /tmp

5.上传本地文件到hdfs

hadoop fs -put $HADOOP_HOME/*.txt /input

6.查看hdfs上input目录下文件

[hadoop@ltt1 ~]$ hadoop fs -ls /input
Found items
-rw-r--r-- hadoop supergroup -- : /input/LICENSE.txt
-rw-r--r-- hadoop supergroup -- : /input/NOTICE.txt
-rw-r--r-- hadoop supergroup -- : /input/README.txt

7.wordcount简单测试。

提君博客原创

[hadoop@ltt1 ~]$ hadoop jar $HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6.-cdh5.12.0.jar wordcount /input /output
// :: INFO input.FileInputFormat: Total input paths to process :
// :: INFO mapreduce.JobSubmitter: number of splits:
// :: INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1505605169997_0002
// :: INFO impl.YarnClientImpl: Submitted application application_1505605169997_0002
// :: INFO mapreduce.Job: The url to track the job: http://ltt1.bg.cn:9180/proxy/application_1505605169997_0002/
// :: INFO mapreduce.Job: Running job: job_1505605169997_0002
// :: INFO mapreduce.Job: Job job_1505605169997_0002 running in uber mode : false
// :: INFO mapreduce.Job: map % reduce %
// :: INFO mapreduce.Job: map % reduce %
// :: INFO mapreduce.Job: map % reduce %
// :: INFO mapreduce.Job: map % reduce %
// :: INFO mapreduce.Job: Job job_1505605169997_0002 completed successfully
// :: INFO mapreduce.Job: Counters: 50
>>提君博客原创  http://www.cnblogs.com/tijun/  <<
File System Counters
FILE: Number of bytes read=
FILE: Number of bytes written=
FILE: Number of read operations=
FILE: Number of large read operations=
FILE: Number of write operations=
HDFS: Number of bytes read=
HDFS: Number of bytes written=
HDFS: Number of read operations=
HDFS: Number of large read operations=
HDFS: Number of write operations=
Job Counters
Launched map tasks=
Launched reduce tasks=
Data-local map tasks=
Rack-local map tasks=
Total time spent by all maps in occupied slots (ms)=
Total time spent by all reduces in occupied slots (ms)=
Total time spent by all map tasks (ms)=
Total time spent by all reduce tasks (ms)=
Total vcore-milliseconds taken by all map tasks=
Total vcore-milliseconds taken by all reduce tasks=
Total megabyte-milliseconds taken by all map tasks=
Total megabyte-milliseconds taken by all reduce tasks=
Map-Reduce Framework
Map input records=
Map output records=
Map output bytes=
Map output materialized bytes=
Input split bytes=
Combine input records=
Combine output records=
Reduce input groups=
Reduce shuffle bytes=
Reduce input records=
Reduce output records=
Spilled Records=
Shuffled Maps =
Failed Shuffles=
Merged Map outputs=
GC time elapsed (ms)=
CPU time spent (ms)=
Physical memory (bytes) snapshot=
Virtual memory (bytes) snapshot=
Total committed heap usage (bytes)=
Shuffle Errors
BAD_ID=
CONNECTION=
IO_ERROR=
WRONG_LENGTH=
WRONG_MAP=
WRONG_REDUCE=
File Input Format Counters
Bytes Read=
File Output Format Counters
Bytes Written=

8.查看wordcount运行结果(由于结果太长,只举出了部分结果)

[hadoop@ltt1 ~]$ hadoop fs -cat /output/*
worldwide, 4
would 1
writing 2
writing, 4
written 19
xmlenc 1
year 1
you 12
your 5
zlib 1
 252.227-7014(a)(1)) 1
§ 1
“AS 1
“Contributor 1
“Contributor” 1
“Covered 1
“Executable” 1
“Initial 1
“Larger 1
“Licensable” 1
“License” 1
“Modifications” 1
“Original 1
“Participant”) 1
“Patent 1
“Source 1
“Your”) 1
“You” 2
“commercial 3
“control” 1

>>提君博客原创  http://www.cnblogs.com/tijun/  <<

至此,通过一个wordcount的一个小栗子,简介实践了一下hdfs的创建文件夹,上传文件,查看目录,运行wordcount实例。

提君博客原创

>>提君博客原创  http://www.cnblogs.com/tijun/  <<

hadoop运行wordcount实例,hdfs简单操作的更多相关文章

  1. Hadoop3 在eclipse中访问hadoop并运行WordCount实例

    前言:       毕业两年了,之前的工作一直没有接触过大数据的东西,对hadoop等比较陌生,所以最近开始学习了.对于我这样第一次学的人,过程还是充满了很多疑惑和不解的,不过我采取的策略是还是先让环 ...

  2. hadoop2.6.5运行wordcount实例

    运行wordcount实例 在/tmp目录下生成两个文本文件,上面随便写两个单词. cd /tmp/ mkdir file cd file/ echo "Hello world" ...

  3. [Linux][Hadoop] 运行WordCount例子

    紧接上篇,完成Hadoop的安装并跑起来之后,是该运行相关例子的时候了,而最简单最直接的例子就是HelloWorld式的WordCount例子.   参照博客进行运行:http://xiejiangl ...

  4. Spark源码编译并在YARN上运行WordCount实例

    在学习一门新语言时,想必我们都是"Hello World"程序开始,类似地,分布式计算框架的一个典型实例就是WordCount程序,接触过Hadoop的人肯定都知道用MapRedu ...

  5. [hadoop] hadoop 运行 wordcount

    讲准备好的文本文件放到hdfs中 执行 hadoop 安装包中的例子 [root@hadoop01 mapreduce]# hadoop jar hadoop-mapreduce-examples-2 ...

  6. hadoop中常用的hdfs代码操作

    一:向HDFS中上传任意文本文件,如果指定的文件在HDFS中已经存在,由用户指定是追加到原有文件末尾还是覆盖原有的文件: package hadoopTest; import org.apache.h ...

  7. HDFS介绍及简单操作

    目录 1.HDFS是什么? 2.HDFS设计基础与目标 3.HDFS体系结构 3.1 NameNode(NN)3.2 DataNode(DN)3.3 SecondaryNameNode(SNN)3.4 ...

  8. Spark学习笔记-如何运行wordcount(使用jar包)

    IDE:eclipse Spark:spark-1.1.0-bin-hadoop2.4 scala:2.10.4 创建scala工程,编写wordcount程序如下 package com.luoga ...

  9. 一文了解 Hadoop 运行机制

    大数据技术栈在当下已经是比较成熟的了,Hadoop 作为大数据存储的基石,其重要程度不言而喻,作为一个想从 java 后端转向大数据开发的程序员来说,打好 Hadoop 基础,就相当于夯实建造房屋的地 ...

随机推荐

  1. M4—按键识别

    三.KEY 3.1  初始化 1.相应端口时钟使能 2.配置GPIO为输入模式 3.根据实际电路图 配置浮空输入,不用上下拉 3.2  按键识别 (1)一般按键步骤(延时消抖) 1. 判断相关的管脚是 ...

  2. UI设计|PS软件操作应用——GIF动图

      前  言 JRedu 在之前的分享中,跟大家主要讲解了PS软件工具的基本操作,对主要的图层.蒙版.通道和滤镜都有一些介绍,希望对大家有所帮助,在介绍这些工具时也提到过GIF,而在本次分享中就跟大家 ...

  3. js面试题知识点全解(一作用域和闭包)

    问题: 1.说一下对变量提升的理解 2.说明this几种不同的使用场景 3.如何理解作用域 4.实际开发中闭包的应用 知识点: js没有块级作用域只有函数和全局作用域,如下代码: if(true){ ...

  4. 2017多校第9场 HDU 6169 Senior PanⅡ 数论,DP,爆搜

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6169 题意:给了区间L,R,求[L,R]区间所有满足其最小质数因子为k的数的和. 解法: 我看了这篇b ...

  5. 简单倒计时js代码

    //倒计时 var timer=null; var interval = 1000; function ShowCountDown(year,month,day,hour,minute,second, ...

  6. [读书笔记] 三、搭建基于Spring boot的JavaWeb项目

    一.POM <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3. ...

  7. Element is not clickable at point error in chrome

    I see this only in Chrome. The full error message reads: "org.openqa.selenium.WebDriverExceptio ...

  8. SVG基本形状及样式设置

    前面的话 图形分为位图和矢量图.位图是基于颜色的描述,是由像素点组成的图像:而矢量图是基于数学矢量的描述,是由几何图元组成的图像,与分辨率无关.可缩放矢量图形,即SVG,是W3C XML的分支语言之一 ...

  9. C和C++混合编程之 extern “C”的使用

    C和C++混合编程之 extern "C"的使用 首先要明白: C++号称是C语言的超集,也确实,从语言的基本语法上,C++是包含所有C语言的语法的,而且C++为了兼容C,连C语言 ...

  10. https 协议下服务器根据网络地址下载上传文件问题

    https 协议下服务器根据网络地址下载上传文件遇到(PKIX:unable to find valid certification path to requested target 的问题) 使用h ...