hadoop运行wordcount实例,hdfs简单操作
1.查看hadoop版本
[hadoop@ltt1 sbin]$ hadoop version
Hadoop 2.6.-cdh5.12.0
Subversion http://github.com/cloudera/hadoop -r dba647c5a8bc5e09b572d76a8d29481c78d1a0dd
Compiled by jenkins on --29T11:33Z
Compiled with protoc 2.5.
From source with checksum 7c45ae7a4592ce5af86bc4598c5b4
This command was run using /home/hadoop/hadoop260/share/hadoop/common/hadoop-common-2.6.-cdh5.12.0.jar
2.通过hadoop自带的jar文件,可以简单测试一些功能。
查看hadoop-mapreduce-examples-2.6.0-cdh5.12.0.jar文件所支持的MapReduce功能列表
[hadoop@ltt1 sbin]$ hadoop jar $HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6.-cdh5.12.0.jar
An example program must be given as the first argument.
Valid program names are:
aggregatewordcount: An Aggregate based map/reduce program that counts the words in the input files.
aggregatewordhist: An Aggregate based map/reduce program that computes the histogram of the words in the input files.
bbp: A map/reduce program that uses Bailey-Borwein-Plouffe to compute exact digits of Pi.
dbcount: An example job that count the pageview counts from a database.
distbbp: A map/reduce program that uses a BBP-type formula to compute exact bits of Pi.
grep: A map/reduce program that counts the matches of a regex in the input.
join: A job that effects a join over sorted, equally partitioned datasets
multifilewc: A job that counts words from several files.
pentomino: A map/reduce tile laying program to find solutions to pentomino problems.
pi: A map/reduce program that estimates Pi using a quasi-Monte Carlo method.
randomtextwriter: A map/reduce program that writes 10GB of random textual data per node.
randomwriter: A map/reduce program that writes 10GB of random data per node.
secondarysort: An example defining a secondary sort to the reduce.
sort: A map/reduce program that sorts the data written by the random writer.
sudoku: A sudoku solver.
teragen: Generate data for the terasort
terasort: Run the terasort
teravalidate: Checking results of terasort
wordcount: A map/reduce program that counts the words in the input files.
wordmean: A map/reduce program that counts the average length of the words in the input files.
wordmedian: A map/reduce program that counts the median length of the words in the input files.
wordstandarddeviation: A map/reduce program that counts the standard deviation of the length of the words in the input files.
3.在hdfs上创建文件夹
hadoop fs -mkdir /input
4.查看hdfs的更目录列表
[hadoop@ltt1 ~]$ hadoop fs -ls /
Found 2 items
drwxr-xr-x - hadoop supergroup 0 2017-09-17 08:11 /input
drwx------ - hadoop supergroup 0 2017-09-17 08:07 /tmp
5.上传本地文件到hdfs
hadoop fs -put $HADOOP_HOME/*.txt /input
6.查看hdfs上input目录下文件
[hadoop@ltt1 ~]$ hadoop fs -ls /input
Found items
-rw-r--r-- hadoop supergroup -- : /input/LICENSE.txt
-rw-r--r-- hadoop supergroup -- : /input/NOTICE.txt
-rw-r--r-- hadoop supergroup -- : /input/README.txt
7.wordcount简单测试。
[hadoop@ltt1 ~]$ hadoop jar $HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6.-cdh5.12.0.jar wordcount /input /output
// :: INFO input.FileInputFormat: Total input paths to process :
// :: INFO mapreduce.JobSubmitter: number of splits:
// :: INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1505605169997_0002
// :: INFO impl.YarnClientImpl: Submitted application application_1505605169997_0002
// :: INFO mapreduce.Job: The url to track the job: http://ltt1.bg.cn:9180/proxy/application_1505605169997_0002/
// :: INFO mapreduce.Job: Running job: job_1505605169997_0002
// :: INFO mapreduce.Job: Job job_1505605169997_0002 running in uber mode : false
// :: INFO mapreduce.Job: map % reduce %
// :: INFO mapreduce.Job: map % reduce %
// :: INFO mapreduce.Job: map % reduce %
// :: INFO mapreduce.Job: map % reduce %
// :: INFO mapreduce.Job: Job job_1505605169997_0002 completed successfully
// :: INFO mapreduce.Job: Counters: 50
>>提君博客原创 http://www.cnblogs.com/tijun/ <<
File System Counters
FILE: Number of bytes read=
FILE: Number of bytes written=
FILE: Number of read operations=
FILE: Number of large read operations=
FILE: Number of write operations=
HDFS: Number of bytes read=
HDFS: Number of bytes written=
HDFS: Number of read operations=
HDFS: Number of large read operations=
HDFS: Number of write operations=
Job Counters
Launched map tasks=
Launched reduce tasks=
Data-local map tasks=
Rack-local map tasks=
Total time spent by all maps in occupied slots (ms)=
Total time spent by all reduces in occupied slots (ms)=
Total time spent by all map tasks (ms)=
Total time spent by all reduce tasks (ms)=
Total vcore-milliseconds taken by all map tasks=
Total vcore-milliseconds taken by all reduce tasks=
Total megabyte-milliseconds taken by all map tasks=
Total megabyte-milliseconds taken by all reduce tasks=
Map-Reduce Framework
Map input records=
Map output records=
Map output bytes=
Map output materialized bytes=
Input split bytes=
Combine input records=
Combine output records=
Reduce input groups=
Reduce shuffle bytes=
Reduce input records=
Reduce output records=
Spilled Records=
Shuffled Maps =
Failed Shuffles=
Merged Map outputs=
GC time elapsed (ms)=
CPU time spent (ms)=
Physical memory (bytes) snapshot=
Virtual memory (bytes) snapshot=
Total committed heap usage (bytes)=
Shuffle Errors
BAD_ID=
CONNECTION=
IO_ERROR=
WRONG_LENGTH=
WRONG_MAP=
WRONG_REDUCE=
File Input Format Counters
Bytes Read=
File Output Format Counters
Bytes Written=
8.查看wordcount运行结果(由于结果太长,只举出了部分结果)
[hadoop@ltt1 ~]$ hadoop fs -cat /output/*
worldwide, 4
would 1
writing 2
writing, 4
written 19
xmlenc 1
year 1
you 12
your 5
zlib 1
252.227-7014(a)(1)) 1
§ 1
“AS 1
“Contributor 1
“Contributor” 1
“Covered 1
“Executable” 1
“Initial 1
“Larger 1
“Licensable” 1
“License” 1
“Modifications” 1
“Original 1
“Participant”) 1
“Patent 1
“Source 1
“Your”) 1
“You” 2
“commercial 3
“control” 1
>>提君博客原创 http://www.cnblogs.com/tijun/ <<
至此,通过一个wordcount的一个小栗子,简介实践了一下hdfs的创建文件夹,上传文件,查看目录,运行wordcount实例。
>>提君博客原创 http://www.cnblogs.com/tijun/ <<
hadoop运行wordcount实例,hdfs简单操作的更多相关文章
- Hadoop3 在eclipse中访问hadoop并运行WordCount实例
前言: 毕业两年了,之前的工作一直没有接触过大数据的东西,对hadoop等比较陌生,所以最近开始学习了.对于我这样第一次学的人,过程还是充满了很多疑惑和不解的,不过我采取的策略是还是先让环 ...
- hadoop2.6.5运行wordcount实例
运行wordcount实例 在/tmp目录下生成两个文本文件,上面随便写两个单词. cd /tmp/ mkdir file cd file/ echo "Hello world" ...
- [Linux][Hadoop] 运行WordCount例子
紧接上篇,完成Hadoop的安装并跑起来之后,是该运行相关例子的时候了,而最简单最直接的例子就是HelloWorld式的WordCount例子. 参照博客进行运行:http://xiejiangl ...
- Spark源码编译并在YARN上运行WordCount实例
在学习一门新语言时,想必我们都是"Hello World"程序开始,类似地,分布式计算框架的一个典型实例就是WordCount程序,接触过Hadoop的人肯定都知道用MapRedu ...
- [hadoop] hadoop 运行 wordcount
讲准备好的文本文件放到hdfs中 执行 hadoop 安装包中的例子 [root@hadoop01 mapreduce]# hadoop jar hadoop-mapreduce-examples-2 ...
- hadoop中常用的hdfs代码操作
一:向HDFS中上传任意文本文件,如果指定的文件在HDFS中已经存在,由用户指定是追加到原有文件末尾还是覆盖原有的文件: package hadoopTest; import org.apache.h ...
- HDFS介绍及简单操作
目录 1.HDFS是什么? 2.HDFS设计基础与目标 3.HDFS体系结构 3.1 NameNode(NN)3.2 DataNode(DN)3.3 SecondaryNameNode(SNN)3.4 ...
- Spark学习笔记-如何运行wordcount(使用jar包)
IDE:eclipse Spark:spark-1.1.0-bin-hadoop2.4 scala:2.10.4 创建scala工程,编写wordcount程序如下 package com.luoga ...
- 一文了解 Hadoop 运行机制
大数据技术栈在当下已经是比较成熟的了,Hadoop 作为大数据存储的基石,其重要程度不言而喻,作为一个想从 java 后端转向大数据开发的程序员来说,打好 Hadoop 基础,就相当于夯实建造房屋的地 ...
随机推荐
- 一个基于JRTPLIB的轻量级RTSP客户端(myRTSPClient)——解码篇:(二)用ffmpeg解码音频
其实这篇的内容和(一)用ffmpeg解码视频基本是一样的,重点还是给ffmpeg指定callback函数,而这个函数是从RTSP服务端那里获取音频数据的. 这里,解码音频的示例代码量之所以比解码视频的 ...
- testng-result中文乱码问题
背景 执行完用例查看报告,发现testng-result.xml文件中关于中文的都是乱码 解决方法 eclipse已设置了utf-8去编译,所以直接运行run as testng ,在console栏 ...
- JSON异步及跨域
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- spring boot / cloud (三) 集成springfox-swagger2构建在线API文档
spring boot / cloud (三) 集成springfox-swagger2构建在线API文档 前言 不能同步更新API文档会有什么问题? 理想情况下,为所开发的服务编写接口文档,能提高与 ...
- 【Linux】CentOS7无法使用tab补全功能
公司新项目在云环境上用CentOS7搭服务器的时候,遇见了无法Tab键自动补齐的情况,上网搜了一下,是因为Centos7在使用最小化安装的时候,没有安装自动补全的包,需要自己手动安装. yum ins ...
- jQuery绑定事物处理器
绑定与移除1..bind() 绑定事件可以有2个或者3个参数:第一个参数为事件类型 第二个参数为处理函数 第三个为布尔类型 on()事件代替2..delegate() 事件委托,三个参数,第一个为选择 ...
- Struts2文件下载中文名乱码
Struts2中提供了快捷的下载方式,通过配置struts.xml文件即可实现文件的下载,但是功能实现后下载文件的文件名却出现乱码,或者直接来个***.action,让人很是无语,但很显然,这是中文乱 ...
- golang channel无缓冲通道会发生阻塞的验证
公司搞了午间技术par,本周我讲的主题是关于无缓冲通道channel是否会发生阻塞,并进行了验证. go语言中channel分为无缓冲通道和有缓冲通道两种 channel提供了一种在goroutine ...
- 残差网络resnet学习
Deep Residual Learning for Image Recognition 微软亚洲研究院的何凯明等人 论文地址 https://arxiv.org/pdf/1512.03385v1.p ...
- 【javascript】详解变量,值,类型和宿主对象
前言 我眼中的<javascript高级程序设计> 和<你不知道的javascript>是这样的:如果<javascript高级程序设计>是本教科书的话, < ...