python版mapreduce题目实现寻找共同好友
看到一篇不知道是好好玩还是好玩玩童鞋的博客,发现一道好玩的mapreduce题目,地址http://www.cnblogs.com/songhaowan/p/7239578.html
如图
由于自己太笨,看到一大堆java代码就头晕、心慌,所以用python把这个题目研究了一下。
题目:寻找共同好友。比如A的好友中有C,B的好友中有C,那么C就是AB的共同好友。
A:B,C,D,F,E,O B:A,C,E,K C:F,A,D,I D:A,E,F,L E:B,C,D,M,L F:A,B,C,D,E,O,M G:A,C,D,E,F H:A,C,D,E,O I:A,O J:B,O K:A,C,D L:D,E,F M:E,F,G O:A,H,I,J
m.py
#-*-encoding:utf-8-*-
#!/home/hadoop/anaconda2/bin/python
import sys
result = {}
for line in sys.stdin:
line = line.strip()
if len(line)==0:
continue
key,vals = line.split(':')
val = vals.split(',')
result[key] = val
if len(result)==1:
continue
else:
for i in result[key]:
for j in result:
if i in result[j]:
if j<key:
print j+key,i
elif j>key:
print key+j,i
r.py
#-*-encoding:utf-8-*-
import sys
result = {}
for line in sys.stdin:
line = line.strip()
k,v = line.split(' ')
if k in result:
result[k].append(v)
else:
result[k] = [v]
for key,val in result.items():
print key,val
执行的命令
hadoop jar /home/hadoop/hadoop-2.7.2/hadoop-streaming-2.7.2.jar \
-files /home/hadoop/test/m.py,/home/hadoop/test/r.py \
-input GTHY -output GTHYout \
-mapper 'python m.py' -reducer 'python r.py'
执行情况
packageJobJar: [/tmp/hadoop-unjar2310332345933071298/] [] /tmp/streamjob8006362102585628853.jar tmpDir=null
17/08/31 14:47:59 INFO client.RMProxy: Connecting to ResourceManager at master/192.168.228.200:18040
17/08/31 14:48:00 INFO client.RMProxy: Connecting to ResourceManager at master/192.168.228.200:18040
17/08/31 14:48:00 INFO mapred.FileInputFormat: Total input paths to process : 1
17/08/31 14:48:00 INFO mapreduce.JobSubmitter: number of splits:2
17/08/31 14:48:01 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1504148710826_0003
17/08/31 14:48:01 INFO impl.YarnClientImpl: Submitted application application_1504148710826_0003
17/08/31 14:48:01 INFO mapreduce.Job: The url to track the job: http://master:8088/proxy/application_1504148710826_0003/
17/08/31 14:48:01 INFO mapreduce.Job: Running job: job_1504148710826_0003
17/08/31 14:48:08 INFO mapreduce.Job: Job job_1504148710826_0003 running in uber mode : false
17/08/31 14:48:08 INFO mapreduce.Job: map 0% reduce 0%
17/08/31 14:48:16 INFO mapreduce.Job: map 100% reduce 0%
17/08/31 14:48:21 INFO mapreduce.Job: map 100% reduce 100%
17/08/31 14:48:21 INFO mapreduce.Job: Job job_1504148710826_0003 completed successfully
17/08/31 14:48:21 INFO mapreduce.Job: Counters: 49
File System Counters
FILE: Number of bytes read=558
FILE: Number of bytes written=362357
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=462
HDFS: Number of bytes written=510
HDFS: Number of read operations=9
HDFS: Number of large read operations=0
HDFS: Number of write operations=2
Job Counters
Launched map tasks=2
Launched reduce tasks=1
Data-local map tasks=2
Total time spent by all maps in occupied slots (ms)=11376
Total time spent by all reduces in occupied slots (ms)=2888
Total time spent by all map tasks (ms)=11376
Total time spent by all reduce tasks (ms)=2888
Total vcore-milliseconds taken by all map tasks=11376
Total vcore-milliseconds taken by all reduce tasks=2888
Total megabyte-milliseconds taken by all map tasks=11649024
Total megabyte-milliseconds taken by all reduce tasks=2957312
Map-Reduce Framework
Map input records=27
Map output records=69
Map output bytes=414
Map output materialized bytes=564
Input split bytes=192
Combine input records=0
Combine output records=0
Reduce input groups=69
Reduce shuffle bytes=564
Reduce input records=69
Reduce output records=33
Spilled Records=138
Shuffled Maps =2
Failed Shuffles=0
Merged Map outputs=2
GC time elapsed (ms)=421
CPU time spent (ms)=2890
Physical memory (bytes) snapshot=709611520
Virtual memory (bytes) snapshot=5725220864
Total committed heap usage (bytes)=487063552
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=270
File Output Format Counters
Bytes Written=510
17/08/31 14:48:21 INFO streaming.StreamJob: Output directory: GTHYout
最终结果
hadoop@master:~/test$ hadoop fs -text GTHYout/part-00000
BD ['A', 'E']
BE ['C']
BF ['A', 'C', 'E']
BG ['A', 'C', 'E']
BC ['A']
DF ['A', 'E']
DG ['A', 'E', 'F']
DE ['L']
HJ ['O']
HK ['A', 'C', 'D']
HI ['A', 'O']
HO ['A']
HL ['D', 'E']
FG ['A', 'C', 'D', 'E']
LM ['E', 'F']
KO ['A']
AC ['D', 'F']
AB ['C', 'E']
AE ['B', 'C', 'D']
AD ['E', 'F']
AG ['C', 'D', 'E', 'F']
AF ['B', 'C', 'D', 'E', 'O']
EG ['C', 'D']
EF ['B', 'C', 'D', 'M']
CG ['A', 'D', 'F']
CF ['A', 'D']
CE ['D']
CD ['A', 'F']
IK ['A']
IJ ['O']
IO ['A']
HM ['E']
KL ['D']
突然发现代码中居然一句注释都没有。果然自己还是太辣鸡,还没养成好习惯。
由于刚接触大数据不久,对java不熟悉,摸索地很慢。希望python的轻便能助我在大数据的世界探索更多。
有错的地方还请大佬多多指出~
python版mapreduce题目实现寻找共同好友的更多相关文章
- python版 mapreduce 矩阵相乘
参考张老师的mapreduce 矩阵相乘. 转载请注明:来自chybot的学习笔记http://i.cnblogs.com/EditPosts.aspx?postid=4541939 下面是我用pyt ...
- Han Xin and His Troops(扩展中国剩余定理 Python版)
Han Xin and His Troops(扩展中国剩余定理 Python版) 题目来源:2019牛客暑期多校训练营(第十场) D - Han Xin and His Troops 题意: 看标 ...
- 【原】Learning Spark (Python版) 学习笔记(三)----工作原理、调优与Spark SQL
周末的任务是更新Learning Spark系列第三篇,以为自己写不完了,但为了改正拖延症,还是得完成给自己定的任务啊 = =.这三章主要讲Spark的运行过程(本地+集群),性能调优以及Spark ...
- 移动端自动化测试Appium 从入门到项目实战Python版☝☝☝
移动端自动化测试Appium 从入门到项目实战Python版 (一个人学习或许会很枯燥,但是寻找更多志同道合的朋友一起,学习将会变得更加有意义✌✌) 说到APP自动化测试,Appium可是说是非常流 ...
- 数据结构:顺序表(python版)
顺序表python版的实现(部分功能未实现) #!/usr/bin/env python # -*- coding:utf-8 -*- class SeqList(object): def __ini ...
- python版恶俗古风自动生成器.py
python版恶俗古风自动生成器.py """ python版恶俗古风自动生成器.py 模仿自: http://www.jianshu.com/p/f893291674c ...
- LAMP一键安装包(Python版)
去年有出一个python整的LAMP自动安装,不过比较傻,直接调用的yum 去安装了XXX...不过这次一样有用shell..我也想如何不调用shell 来弄一个LAMP自动安装部署啥啥的..不过尼玛 ...
- 编码的秘密(python版)
编码(python版) 最近在学习python的过程中,被不同的编码搞得有点晕,于是看了前人的留下的文档,加上自己的理解,准备写下来,分享给正在为编码苦苦了挣扎的你. 编码的概念 编码就是将信息从一种 ...
- Zabbix 微信报警Python版(带监控项波动图片)
#!/usr/bin/python # -*- coding: UTF- -*- #Function: 微信报警python版(带波动图) #Environment: python import ur ...
随机推荐
- *更新*无需root,一条命令强制全屏模式
未root的系统,必须通过pc端运行adb命令进行设置,因此请开启开发者选项中的adb调试模式,用usb连接电脑和手机,运行下面的代码强制开启全屏模式,立即生效:全屏沉浸: adb shell set ...
- 一个Web 持续集成工作实践
一个web的持续基础实践: https://mp.weixin.qq.com/src=3×tamp=1494325174&ver=1&signature=wFVC0E ...
- 进阶篇之纯css+字体实现五角星(半颗星)评分
1.前言 之前写了一篇实现五角星打分效果的demo.这个demo用来实现打分效果绰绰有余,那么有时候我们在统计评分的时候,就会有半颗星或者1/3颗星星这样的那要如何实现呢?来来来,纯字体+css实现! ...
- JavaScript addEventListener 第三个参数
先看一个完整的演示页面代码. Code <!DOCTYPE html> <html lang="zh-CN"> <head> <meta ...
- [补档][COGS 2434]暗之链锁
[COGS 2434]暗之链锁 题目 传说中的暗之连锁被人们称为Dark.<!--more-->Dark是人类内心的黑暗的产物,古今中外的勇者们都试图打倒它.经过研究,你发现Dark呈现无 ...
- 数据处理之pandas简单介绍
Offical Website :http://pandas.pydata.org/ 一:两种基本的数据类型结构 Series 和 DataFrame 先来看一下Series import panda ...
- K个最近的点
前段时间在网上看到一些准备找工作的人会在LintCode上刷题,然后我今天上去看了一下,也打算开始做题,然后把每天做的题目和以后的优化记录下来. 2017年8月6日 21:17:27 第一题: 描述: ...
- css的选择器的优先级
css覆盖是在打代码的时候,开发者很普通很普通,也是很经常经常用到的,但是容易混淆他们之间的优先级. [][][] 第一个是id,第二个是class,第三个是元素名.有一个就加一.比较这个三位数的大小 ...
- (3)markdown软件的使用
运行Mou.zip解压出来一个软件,它让托到应用程序中,然后打开 另一种软件为gitBook 安装好软件后,使用快捷键F4可以调出所有的应用程序 使用md(markdown简称)有个缺点就是,当内容比 ...
- getComputedStyle方法获取元素CSS值
javascript的style属性只能获取内联样式,对于外部样式和嵌入式样式需要用currentStyle属性.但是,currentStyle在FIrefox和Chrome下不支持,需要用getCo ...