hdu 1086 You can Solve a Geometry Problem too 求n条直线交点的个数
You can Solve a Geometry Problem too
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 13549 Accepted Submission(s): 6645
Give you N (1<=N<=100) segments(线段), please output the number of all intersections(交点). You should count repeatedly if M (M>2) segments intersect at the same point.
Note:
You can assume that two segments would not intersect at more than one point.
A test case starting with 0 terminates the input and this test case is not to be processed.
#include<iostream>
#include<string.h>
#include<string>
#include<algorithm>
#include<math.h>
#include<string>
#include<string.h>
#include<vector>
#include<utility>
#include<map>
#include<queue>
#include<set>
#define mx 0x3f3f3f3f
#define ll long long
using namespace std;
const int N = ;
int flag;
double ans1,ans2,yy;
struct Point//定义点的结构体
{
double x, y;
};
struct stline//定义边的结构体
{
Point a, b;
} line[]; bool cmp(Point a, Point b)
{
return a.y < b.y;
}
int dblcmp(double a, double b)
{
if (fabs(a - b) <= 1E-) return ;
if (a > b) return ;
else return -;
}
//***************点积判点是否在线段上***************
double dot(double x1, double y1, double x2, double y2) //点积
{
return x1 * x2 + y1 * y2;
} int point_on_line(Point a, Point b, Point c) //求a点是不是在线段bc上,>0不在,=0与端点重合,<0在。
{
return dblcmp(dot(b.x - a.x, b.y - a.y, c.x - a.x, c.y - a.y), );
}
//**************************************************
double cross(double x1, double y1, double x2, double y2)
{
return x1 * y2 - x2 * y1;
}
double ab_cross_ac(Point a, Point b, Point c) //ab与ac的叉积
{
return cross(b.x - a.x, b.y - a.y, c.x - a.x, c.y - a.y);
}
int ab_cross_cd (Point a,Point b,Point c,Point d) //求ab是否与cd相交,交点为p。1规范相交,0交点是一线段的端点,-1不相交。
{
double s1,s2,s3,s4;
int d1,d2,d3,d4;
Point p;
d1=dblcmp(s1=ab_cross_ac(a,b,c),);
d2=dblcmp(s2=ab_cross_ac(a,b,d),);
d3=dblcmp(s3=ab_cross_ac(c,d,a),);
d4=dblcmp(s4=ab_cross_ac(c,d,b),); //如果规范相交则求交点
if ((d1^d2)==- && (d3^d4)==-)
{
p.x=(c.x*s2-d.x*s1)/(s2-s1);
p.y=(c.y*s2-d.y*s1)/(s2-s1);
return ;
} //如果不规范相交
if (d1== && point_on_line(c,a,b)<=)
{
p=c;
return ;
}
if (d2== && point_on_line(d,a,b)<=)
{
p=d;
return ;
}
if (d3== && point_on_line(a,c,d)<=)
{
p=a;
return ;
}
if (d4== && point_on_line(b,c,d)<=)
{
p=b;
return ;
}
//如果不相交
return -;
}
int main()
{
int t;
while(scanf("%d", &t)&&t)
{
int cnt=;
for(int i=;i<=t;i++)
scanf("%lf%lf%lf%lf", &line[i].a, &line[i].a.y, &line[i].b.x, &line[i].b.y);
for(int i=;i<=t;i++)
{
for(int j=i+;j<=t;j++)
{
if(ab_cross_cd(line[i].a, line[i].b, line[j].a, line[j].b)!=-)
cnt++;
}
}
printf("%d\n",cnt);
}
return ;
}
hdu 1086 You can Solve a Geometry Problem too 求n条直线交点的个数的更多相关文章
- hdu 1086 You can Solve a Geometry Problem too
You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/3 ...
- hdu 1086:You can Solve a Geometry Problem too(计算几何,判断两线段相交,水题)
You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/3 ...
- hdu 1086 You can Solve a Geometry Problem too (几何)
You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/3 ...
- hdu 1086 You can Solve a Geometry Problem too [线段相交]
题目:给出一些线段,判断有几个交点. 问题:如何判断两条线段是否相交? 向量叉乘(行列式计算):向量a(x1,y1),向量b(x2,y2): 首先我们要明白一个定理:向量a×向量b(×为向量叉乘),若 ...
- HDU 1086 You can Solve a Geometry Problem too( 判断线段是否相交 水题 )
链接:传送门 题意:给出 n 个线段找到交点个数 思路:数据量小,直接暴力判断所有线段是否相交 /*************************************************** ...
- (hdu step 7.1.2)You can Solve a Geometry Problem too(乞讨n条线段,相交两者之间的段数)
称号: You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/ ...
- Hdoj 1086.You can Solve a Geometry Problem too 题解
Problem Description Many geometry(几何)problems were designed in the ACM/ICPC. And now, I also prepare ...
- HDU 1086You can Solve a Geometry Problem too(判断两条选段是否有交点)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1086 判断两条线段是否有交点,我用的是跨立实验法: 两条线段分别是A1到B1,A2到B2,很显然,如果 ...
- 【HDOJ】1086 You can Solve a Geometry Problem too
数学题,证明AB和CD.只需证明C.D在AB直线两侧,并且A.B在CD直线两侧.公式为:(ABxAC)*(ABxAD)<= 0 and(CDxCA)*(CDxCB)<= 0 #includ ...
随机推荐
- 移除微信昵称中的emoji字符
移除微信昵称中的emoji字符: /** * 移除微信昵称中的emoji字符 * @param type $nickname * @return type */ function removeEmoj ...
- python opencv:图像的一些属性与操作
img = cv.imread(xxx) # 常用的有以下属性 type(img) # img的数据类型 img.shape # img的结构 img.size # img的大小 img.dtype ...
- ETCD授权认证
export ETCDCTL_API=3 ENDPOINTS=localhost:2379 etcdctl --endpoints=${ENDPOINTS} role add root etcdctl ...
- 吴裕雄--天生自然Numpy库学习笔记:NumPy 创建数组
import numpy as np x = np.empty([3,2], dtype = int) print (x) import numpy as np # 默认为浮点数 x = np.zer ...
- k sum 问题系列
转自:http://tech-wonderland.net/blog/summary-of-ksum-problems.html (中文旧版)前言: 做过leetcode的人都知道, 里面有2sum, ...
- rtt学习之线程间同步与通信
一 线程间的同步与互斥:信号量.互斥量.实践集 线程互斥是指对于临界区资源访问的排它性,如多个线程对共享内存资源的访问,生产消费型对产品的操作.临界区操作操作方法有: rt_hw_interrupt_ ...
- Update(stage3):第1节 redis组件:4、安装(略);5、数据类型(略);6、javaAPI操作;
第三步:redis的javaAPI操作 操作string类型数据 操作hash列表类型数据 操作list类型数据 操作set类型的数据 详见代码
- 【译】高级T-SQL进阶系列 (二)【下篇】:使用 APPLY操作符
[译注:此文为翻译,由于本人水平所限,疏漏在所难免,欢迎探讨指正] 原文链接:传送门. 使用OUTER APPLY 操作符 OUTER APPLY操作符工作起来和CROSS APPLY比较类似.唯一的 ...
- C — 小知识
老是记错int与void*之间的转换,所以记录一个,顺便用一下一些宏.预处理... int与void*的转换.打印变量名: #include <stdio.h> // 打印变量名 #def ...
- 第二节: Vuejs常用特性1
一. 常用特性 1. 表单元素 通过 v-model指令绑定 输入框.单选/多选框.下拉框.文本框 2. 表单域修饰符 (1) .number:转换成数值,如果输入的是非数字字符串时,无法进行转换 ( ...