网络结构(6c-2s-12c-2s):

初始化:

\begin{align}\notag
W \sim U(- \frac{\sqrt{6}}{\sqrt{n_j+n_{j+1}}} , \frac{\sqrt{6}}{\sqrt{n_j+n_{j+1}}})
\end{align}

\begin{align}\notag
Var(W_i) = \frac{1}{n_i} ; Var(W_i) = \frac{1}{n_{i+1}} ; Var(W_i) = \frac{1}{n_i + n_{i+1}}
\end{align}

        偏置 $ b $ 统一初始化为 $ 0 $ ,权重 $ W $ 设置为 $ random(-1,1)\sqrt{\frac{6}{fan_{in} + fan_{out}}} \sim U(- \frac{\sqrt{6}}{\sqrt{n_j+n_{j+1}}} , \frac{\sqrt{6}}{\sqrt{n_j+n_{j+1}}}) $ , $ n_j $ 表示神经网络的大小, $ fan_{in} = 输入通道数\times卷积核size $ , $ fan_{out} = 输出通道数\times卷积核size $ 。

    for l = 1 : numel(net.layers)   %  layer
        if strcmp(net.layers{l}.type, 's')
            mapsize = mapsize / net.layers{l}.scale;
            assert(all(floor(mapsize)==mapsize), ['Layer ' num2str(l) ' size must be integer. Actual: ' num2str(mapsize)]);
            for j = 1 : inputmaps
                net.layers{l}.b{j} = 0;
            end
        end
        if strcmp(net.layers{l}.type, 'c')
            mapsize = mapsize - net.layers{l}.kernelsize + 1;
            fan_out = net.layers{l}.outputmaps * net.layers{l}.kernelsize ^ 2;
            for j = 1 : net.layers{l}.outputmaps  %  output map
                fan_in = inputmaps * net.layers{l}.kernelsize ^ 2;
                for i = 1 : inputmaps  %  input map
                    net.layers{l}.k{i}{j} = (rand(net.layers{l}.kernelsize) - 0.5) * 2 * sqrt(6 / (fan_in + fan_out));
                end
                net.layers{l}.b{j} = 0;
            end
            inputmaps = net.layers{l}.outputmaps;
        end
    end
    % 'onum' is the number of labels, that's why it is calculated using size(y, 1). If you have 20 labels so the output of the network will be 20 neurons.
    % 'fvnum' is the number of output neurons at the last layer, the layer just before the output layer.
    % 'ffb' is the biases of the output neurons.
    % 'ffW' is the weights between the last layer and the output neurons. Note that the last layer is fully connected to the output layer, that's why the size of the weights is (onum * fvnum)
    fvnum = prod(mapsize) * inputmaps;
    onum = size(y, 1);

    net.ffb = zeros(onum, 1);
    net.ffW = (rand(onum, fvnum) - 0.5) * 2 * sqrt(6 / (onum + fvnum));

前向传播:

\begin{align}\notag
x_j^l = f(\sum_ {i\in M_j} x_i^{l-1} * k_{ij}^l + b_j^l)
\end{align}

            %  !!below can probably be handled by insane matrix operations
            for j = 1 : net.layers{l}.outputmaps   %  for each output map
                %  create temp output map
                z = zeros(size(net.layers{l - 1}.a{1}) - [net.layers{l}.kernelsize - 1 net.layers{l}.kernelsize - 1 0]);
                for i = 1 : inputmaps   %  for each input map
                    %  convolve with corresponding kernel and add to temp output map
                    z = z + convn(net.layers{l - 1}.a{i}, net.layers{l}.k{i}{j}, 'valid');
                end
                %  add bias, pass through nonlinearity
                net.layers{l}.a{j} = sigm(z + net.layers{l}.b{j});
            end
            %  set number of input maps to this layers number of outputmaps
            inputmaps = net.layers{l}.outputmaps;

前向传播:

\begin{align}\notag
x_j^l = f(\beta_j^l down(x_j^{l-1}) + b_j^l)
\end{align}

            %  downsample
            for j = 1 : inputmaps
                z = convn(net.layers{l - 1}.a{j}, ones(net.layers{l}.scale) / (net.layers{l}.scale ^ 2), 'valid');   %  !! replace with variable
                net.layers{l}.a{j} = z(1 : net.layers{l}.scale : end, 1 : net.layers{l}.scale : end, :);
            end

前向传播:

    %  concatenate all end layer feature maps into vector
    net.fv = [];
    for j = 1 : numel(net.layers{n}.a)
        sa = size(net.layers{n}.a{j});
        net.fv = [net.fv; reshape(net.layers{n}.a{j}, sa(1) * sa(2), sa(3))];
    end
    %  feedforward into output perceptrons
    net.o = sigm(net.ffW * net.fv + repmat(net.ffb, 1, size(net.fv, 2)));

sigmoid函数求导:

\begin{align}\notag
f(x) = \frac{1}{1+e^{-x}} ; f^\prime(x) = \frac{e^{-x}}{(1+e^{-x})^2} = f(x) \cdot [1 - f(x)]
\end{align}

对网络的最后一层输出层,计算输出值和样本值得残差:

\begin{align}\notag
\delta^n = -(y-a^n)\cdot f^\prime(z^n)
\end{align}

    %   error
    net.e = net.o - y;
    %%  backprop deltas
    net.od = net.e .* (net.o .* (1 - net.o));   %  output delta

对于隐层 $ l = n-1,n-2,n-3,...,2 $ ,计算各节点残差:

\begin{align}\notag
\delta^l = ({(W^l)}^T \delta^{l+1}) \cdot f^\prime(z^l)
\end{align}

    %  concatenate all end layer feature maps into vector
    net.fv = [];
    for j = 1 : numel(net.layers{n}.a)
        sa = size(net.layers{n}.a{j});
        net.fv = [net.fv; reshape(net.layers{n}.a{j}, sa(1) * sa(2), sa(3))];
    end
    net.fvd = (net.ffW' * net.od);              %  feature vector delta
    if strcmp(net.layers{n}.type, 'c')         %  only conv layers has sigm function
        net.fvd = net.fvd .* (net.fv .* (1 - net.fv));
    end

反向传播:

\begin{align}\notag
\delta_j^l = f^\prime(u_j^l)\circ conv2(\delta_j^{l+1},rot180(k_j^{l+1}),'full')
\end{align}

            for i = 1 : numel(net.layers{l}.a)
                z = zeros(size(net.layers{l}.a{1}));
                for j = 1 : numel(net.layers{l + 1}.a)
                     z = z + convn(net.layers{l + 1}.d{j}, rot180(net.layers{l + 1}.k{i}{j}), 'full');
                end
                net.layers{l}.d{i} = z;
            end

反向传播:

\begin{align}\notag
\delta_j^l = \beta_j^{l+1}(f^\prime(u_j^l) \circ up(\delta_j^{l+1}))
\end{align}

            for j = 1 : numel(net.layers{l}.a)
                net.layers{l}.d{j} = net.layers{l}.a{j} .* (1 - net.layers{l}.a{j}) .* (expand(net.layers{l + 1}.d{j}, [net.layers{l + 1}.scale net.layers{l + 1}.scale 1]) / net.layers{l + 1}.scale ^ 2);
            end

计算最终需要的偏导数值:

\begin{align}\notag
\nabla_{W^l}J(W,b;x,y) = \delta^{l+1}(a^l)^T
\end{align}

\begin{align}\notag
\nabla_{b^l}J(W,b;x,y) = \delta^{l+1}
\end{align}

\begin{align}\notag
\nabla_{W^l}J(W,b) = [\frac{1}{m}\sum_{i=1}^m\nabla_{W^l}J(W,b;x,y)]+\lambda W_{ij}^l
\end{align}

\begin{align}\notag
\nabla_{b^l}J(W,b) = \frac{1}{m}\sum_{i=1}^m\nabla_{b^l}J(W,b;x,y)
\end{align}

\begin{align}\notag
\frac{\partial E}{\partial k_{ij}^l} = rot180(conv2(x_i^{l-1},rot180(\delta_j^l),'valid'))
\end{align}

\begin{align}\notag
\frac{\partial E}{\partial b_j} = \sum_{u,v}(\delta_j^l)_{uv}
\end{align}

    for l = 2 : n
        if strcmp(net.layers{l}.type, 'c')
            for j = 1 : numel(net.layers{l}.a)
                for i = 1 : numel(net.layers{l - 1}.a)
                    net.layers{l}.dk{i}{j} = convn(flipall(net.layers{l - 1}.a{i}), net.layers{l}.d{j}, 'valid') / size(net.layers{l}.d{j}, 3);
                end
                net.layers{l}.db{j} = sum(net.layers{l}.d{j}(:)) / size(net.layers{l}.d{j}, 3);
            end
        end
    end
    net.dffW = net.od * (net.fv)' / size(net.od, 2);
    net.dffb = mean(net.od, 2);

CNN反向传播算法公式的更多相关文章

  1. 卷积神经网络(CNN)反向传播算法

    在卷积神经网络(CNN)前向传播算法中,我们对CNN的前向传播算法做了总结,基于CNN前向传播算法的基础,我们下面就对CNN的反向传播算法做一个总结.在阅读本文前,建议先研究DNN的反向传播算法:深度 ...

  2. CNN反向传播更新权值

    背景 反向传播(Backpropagation)是训练神经网络最通用的方法之一,网上有许多文章尝试解释反向传播是如何工作的,但是很少有包括真实数字的例子,这篇博文尝试通过离散的数据解释它是怎样工作的. ...

  3. CNN反向传播算法过程

    主模块 规格数据输入(加载,调格式,归一化) 定义网络结构 设置训练参数 调用初始化模块 调用训练模块 调用测试模块 画图 初始化模块 设置初始化参数(输入通道,输入尺寸) 遍历层(计算尺寸,输入输出 ...

  4. CNN中卷积层 池化层反向传播

    参考:https://blog.csdn.net/kyang624823/article/details/78633897 卷积层 池化层反向传播: 1,CNN的前向传播 a)对于卷积层,卷积核与输入 ...

  5. CNN的反向传播

    在一般的全联接神经网络中,我们通过反向传播算法计算参数的导数.BP 算法本质上可以认为是链式法则在矩阵求导上的运用.但 CNN 中的卷积操作则不再是全联接的形式,因此 CNN 的 BP 算法需要在原始 ...

  6. CNN压缩:为反向传播添加mask(caffe代码修改)

    神经网络压缩的研究近三年十分热门,笔者查阅到相关的两篇博客,博主们非常奉献的提供了源代码,但是发发现在使用gpu训练添加mask的网络上,稍微有些不顺,特此再进行详细说明. 此文是在 基于Caffe的 ...

  7. 《神经网络的梯度推导与代码验证》之CNN前向和反向传播过程的代码验证

    在<神经网络的梯度推导与代码验证>之CNN的前向传播和反向梯度推导 中,我们学习了CNN的前向传播和反向梯度求导,但知识仍停留在纸面.本篇章将基于深度学习框架tensorflow验证我们所 ...

  8. CNN卷积层基础:特征提取+卷积核+反向传播

    本篇介绍卷积层的线性部分 一.与全连接层相比卷积层有什么优势? 卷积层可以节省参数,因为卷积运算利用了图像的局部相关性——分析出一小片区域的特点,加上Pooling层(汇集.汇聚),从附近的卷积结果中 ...

  9. 神经网络训练中的Tricks之高效BP(反向传播算法)

    神经网络训练中的Tricks之高效BP(反向传播算法) 神经网络训练中的Tricks之高效BP(反向传播算法) zouxy09@qq.com http://blog.csdn.net/zouxy09 ...

随机推荐

  1. python学习Day25--正则表达式1

    [知识点] # 所有模块要经历的两个步骤: ① 要操作的概念本身:正则表达式   时间 ② 使用模块取操作它:re                  time 1.正则表达式:一种匹配字符串的规则 # ...

  2. 最新版自动检测卡片类型工具软件版本(auto check card type v3.2.0)

    自动检测卡片类型工具软件. 卡片放到读卡器上面自动识别卡片类型,不需老是按下按钮,好用,方便.支持自动识别NTAG213卡片,NTAG215卡片, NTAG216卡片,Ultralight芯片, Ul ...

  3. MyBatis-Plus学习笔记(2):代码生成器

    AutoGenerator 是 MyBatis-Plus 的代码生成器,通过 AutoGenerator 可以快速生成 Entity.Mapper.Mapper XML.Service.Control ...

  4. char **argv 与char *argv[]

    1.char **argv 分析:argv是一个指针变量,argv的指向(*argv)是char *,也就是argv指向的也是一个指针 : *argv的指向(**argv)是char. 2.char ...

  5. python 语法-参数注释

    python 语法-参数注释 最近碰到的这样的代码: def func(a:"shuoming") -> int: print("函数已运行.") fun ...

  6. centosflask+uWSGI+nginx部署

    centosflask+uWSGI+nginx部署 1.      概念 Flask自带webserver--Werkzeug,可以搭建服务,运行网站.但在开发时,一般会用专业的--uWSGI. 另外 ...

  7. cf--TV Subscriptions (Hard Version)

    time limit per test:2 seconds memory limit per test:256 megabytes input:standard input output:standa ...

  8. JPA 级联保存的问题

    前提:系统有学校-学生关系,学校可以包含多个学生,学生只能属于一个学校 在使用 spring-data-jpa 的时候,保存学校的同时保存学生信息,不需要先逐个保存学生信息,再将学生信息放在学校中保存 ...

  9. Python与线性代数——Numpy中的matrix()和array()的区别

    Numpy中matrix必须是2维的,但是 numpy中array可以是多维的(1D,2D,3D····ND).matrix是array的一个小的分支,包含于array.所以matrix 拥有arra ...

  10. BFS迷宫问题

    链接:https://ac.nowcoder.com/acm/challenge/terminal来源:牛客网 小明现在在玩一个游戏,游戏来到了教学关卡,迷宫是一个N*M的矩阵. 小明的起点在地图中用 ...