版权声明:本文为博主原创文章,未经博主允许不得转载。

  本系列文章旨在总结主流视觉SLAM算法的框架,对比各个算法在子模块的差异,最终提炼出融合各个算法优点的架构。

  PTAM[1]是视觉SLAM领域里程碑式的项目。在此之前,MonoSLAM[2]为代表的基于卡尔曼滤波的算法架构是主流,它用单个线程逐帧更新相机位置姿态和地图。地图更新的计算复杂度很高,为了做到实时处理(30Hz),MonoSLAM每帧图片只能用滤波的方法处理约10~12个最稳定的特征点。PTAM最大的贡献是提出了tracking、mapping双线程的架构,tracking线程只需要逐帧更新相机位置姿态,可以很容易实现实时计算;而mapping线程并不需要逐帧更新,有更长的处理时间,原来只能用在离线SfM(Structure from Motion)的BA(Bundle Adjustment)也可以用起来。这种基于优化的算法比滤波法在单位计算时间可以得到更高的精度[3]。这种多线程的处理方式也更顺应现代CPU的发展趋势。之后的视觉SLAM算法几乎全部沿用了这一思想。

  在tracking线程,地图(由地图点和关键帧组成)是已知且固定的。对图片构造金字塔的目的有两个:1)加快匹配;2)提高地图点相对于相机远近变化时的鲁棒性。FAST是常用的特征点,优点是快,缺点是不鲁棒。通常会先提取出大量的(成百上千个)FAST特征,然后用各种约束剔除误匹配。基于运动模型(PTAM选用减速模型,一般匀速模型更常见)假定当前帧的初始位置姿态,把地图点投影到当前帧,建立起当前帧和关键帧(每个地图点会关联第一次观察到它的关键帧)的联系。随后在匹配点附近找一块小区域(这就是所谓的patch),通过比较当前帧和关键帧的patch的相似度(计算SSD),可以剔除误匹配(值得注意的是,这里的patch匹配和直接法里的光流跟踪是不同的,这里只是单纯为了剔除误匹配,两帧的相对位置姿态是通过最小化重投影误差得到的)。为了去除观测位置姿态不同的影响,会在匹配前对patch做仿射变换,直观的解释是:正方形从另一个角度看是平行四边形。Patch匹配的另一个用处是提高匹配点的精度,可以用插值得到亚像素级别的坐标,这对于金字塔高层图片上的匹配点帮助很大。找到一系列匹配点之后,就可以优化求解当前帧的位置姿态,优化通常是在李群求解。PTAM为了加速计算,设计了从粗到细两轮求解过程,粗测阶段只考虑金字塔最高层图片上的少量匹配点(50个),优化出的位置姿态作为精测阶段的初值,精测阶段会纳入更多匹配点(1000个)和金字塔所有层。从粗到细两轮求解的缺点是会增加抖动(jitter),改进的办法是在接近静止的状态下跳过粗测直接进入精测阶段。PTAM用三个级别评判tracking质量:好、不好、丢失。只会在“好”的状态下插入新关键帧和地图点,如果“丢失”,会有简单的重定位功能(在所有关键帧中找相似的)。

  在mapping线程,优化对象是地图点位置和关键帧位置姿态,不再考虑当前帧的位置姿态。先利用两帧图片初始化,具体方法是先五点法加RANSAC求出初值,然后所有匹配点(约1000个)BA优化。由于是单目,所以尺度是未知的,当做常数固定下来。首先从以下几个角度判断当前帧是否是关键帧:1)tracking效果好;2)距离上一个关键帧至少20帧图片;3)距离最近的地图点大于一个阈值,这是为了保证baseline足够大。如果当前帧不是关键帧,则做BA优化。PTAM把BA优化分为局部和全局两部分,这和tracking线程从粗到细两轮求解是一个思路,都是为了降低计算复杂度,加速求解。在局部BA阶段,只考虑滑动窗内的关键帧(5帧),以及它们能观测到的所有地图点。额外的约束是能观测到这些地图点的其他关键帧,这些关键帧固定不动,并不是优化对象。全局BA阶段,优化对象纳入所有的关键帧和地图点。在闲暇时间mapping线程可以利用旧的关键帧改善地图,要么从旧的关键帧观察新添加的地图点,要么重新测量之前被剔除的外点,如果被成功观测并收敛,则作为新的地图点插入地图。如果当前帧是关键帧,则做两件事情:1)把所有地图点投影到这个新的关键帧(tracking线程处于计算量的考虑只投影了一部分地图点),为之后的BA做准备;2)生成新的地图点,会对新关键帧的特征点做非极大值抑制,并筛选出最显著(Shi-Tomasi分数)的一批特征点,然后在最近的关键帧上沿极线搜索匹配点,只要能找到匹配点,就三角化出地图点。

参考文献:

[1] Klein G, Murray D. Parallel tracking and mapping for small AR workspaces[C]//Mixed and Augmented Reality, 2007. ISMAR 2007. 6th IEEE and ACM International Symposium on. IEEE, 2007: 225-234.

[2] Davison A J, Reid I D, Molton N D, et al. MonoSLAM: Real-time single camera SLAM[J]. IEEE transactions on pattern analysis and machine intelligence, 2007, 29(6): 1052-1067.

[3] Strasdat H, Montiel J M M, Davison A J. Real-time monocular SLAM: Why filter?[C]//Robotics and Automation (ICRA), 2010 IEEE International Conference on. IEEE, 2010: 2657-2664.

视觉SLAM算法框架解析(1) PTAM的更多相关文章

  1. 视觉SLAM算法框架解析(3) SVO

    版权声明:本文为博主原创文章,未经博主允许不得转载. SVO(Semi-direct Visual Odometry)[1]顾名思义是一套视觉里程计(VO)算法.相比于ORB-SLAM,它省去了回环检 ...

  2. 视觉SLAM算法框架解析(2) ORB-SLAM

    版权声明:本文为博主原创文章,未经博主允许不得转载. ORB-SLAM[1]完全继承了PTAM(http://www.cnblogs.com/zonghaochen/p/8442699.html)的衣 ...

  3. SLAM学习笔记(2)SLAM算法

    SLAM算法分为三类:Kalman滤波.概率滤波.图优化 Kalman滤波方法包括EKF.EIF:概率滤波包括RBPF,FastSLAM是RBPF滤波器最为成功的实例, 也是应用最为广泛的SLAM方法 ...

  4. 视觉SLAM的主要功能模块分析

    视觉SLAM的主要功能模块分析 一.基本概念 SLAM (simultaneous localization and mapping),也称为CML (Concurrent Mapping and L ...

  5. 转:SLAM算法解析:抓住视觉SLAM难点,了解技术发展大趋势

    SLAM(Simultaneous Localization and Mapping)是业界公认视觉领域空间定位技术的前沿方向,中文译名为“同步定位与地图构建”,它主要用于解决机器人在未知环境运动时的 ...

  6. 经典视觉SLAM框架

    经典视觉SLAM框架 整个视觉SLAM流程包括以下步骤: 1. 传感器信息读取.在视觉SLAM中主要为相机图像信息的读取和预处理. 2. 视觉里程计(Visual Odometry,VO).视觉里程计 ...

  7. 视觉SLAM之词袋(bag of words) 模型与K-means聚类算法浅析

    原文地址:http://www.cnblogs.com/zjiaxing/p/5548265.html 在目前实际的视觉SLAM中,闭环检测多采用DBOW2模型https://github.com/d ...

  8. 视觉SLAM之词袋(bag of words) 模型与K-means聚类算法浅析(1)

    在目前实际的视觉SLAM中,闭环检测多采用DBOW2模型https://github.com/dorian3d/DBoW2,而bag of words 又运用了数据挖掘的K-means聚类算法,笔者只 ...

  9. TLD视觉跟踪算法(转)

    源:TLD视觉跟踪算法 TLD算法好牛逼一个,这里有个视频,是作者展示算法的效果,http://www.56.com/u83/v_NTk3Mzc1NTI.html.下面这个csdn博客里有人做的相关总 ...

随机推荐

  1. MVC通用仓储类

    原文链接:http://www.codeproject.com/Articles/1095323/Generic-Repository-Pattern-MVC 良好的架构师任何项目的核心,开发人员一直 ...

  2. java使用mongoTemplate去重排序查询

    import org.springframework.data.mongodb.core.MongoTemplate;import org.springframework.data.mongodb.c ...

  3. openstack trove weekly meeting时间即将更改

    为了平衡英国.巴黎.德国.美国和中国开发者的作息习惯,openstack trove项目组在5月18日的weekly meeting上开始讨论新的开会时间. 当前的开会时间是,周三 UTC 18:00 ...

  4. html_位置偏移属性position

    定位属性 位置属性position:static.relative.absolute.fixed 偏移属性:top.bottom.left.right 浮动定位属性:float/clear 1.浮动定 ...

  5. (转)Java并发编程:阻塞队列

    Java并发编程:阻塞队列 在前面几篇文章中,我们讨论了同步容器(Hashtable.Vector),也讨论了并发容器(ConcurrentHashMap.CopyOnWriteArrayList), ...

  6. 给普通用户加sudo权限

    系统环境:centos 7.0 引文:在实验室的服务器上给每个人分配了一个账号,但是有的时候普通用户需要使用root权限,比如装一些软件之类的.下面介绍怎么给普通用户添加sudo命令权限. 前提: s ...

  7. Python笔记_第一篇_面向过程_第一部分_5.Python数据类型之字符串类型(string)

    关于Python的字符串处理也如其他语言一样属于重点中的重点,主要是牵扯到的函数和内容较为多和乱一些.关于什么是字符串,Python中的定义是:以单引号或者双引号括起来的任意文本. 1.   字符串的 ...

  8. 卡常的编译命令(含O2优化)

    不解释,直接来 //包括O2,O3之类的编译命令 //直接copy and paste #pragma GCC optimize(2) #pragma GCC optimize(3) #pragma ...

  9. share团队冲刺9

    团队冲刺第九天 昨天:完善代码 今天:修改代码中的问题,提高兼容性 问题:无

  10. 黑马_13 Spring Boot:04.spring boot 配置文件

    13 Spring Boot: 01.spring boot 介绍&&02.spring boot 入门 04.spring boot 配置文件 05.spring boot 整合其他 ...