NearestNeighbors(n_neighbors=5, radius=1.0, algorithm='auto', leaf_size=30, metric='minkowski', p=2, metric_params=None, n_jobs=None)

Parameters(参数):

    n_neighbors(n邻域):所要选用的最近邻的数目,相当于knn算法(k近邻算法)中的 k,(default = 5),在设置此参数时输入的需为整形(int)。

radius(半径):要使用的参数空间范围,在设置此参数时输入的需为浮点数(float)。

 algorithm{‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}:即用于选取计算最近邻的算法:这里主要包括

    ‘auto’      :根据样本数据自动刷选合适的算法。

‘ball_tree’:构建“球树”算法模型。

‘kd_tree’ :‘’kd树‘’算法。

‘brute’     :使用蛮力搜索,即或相当于Knn算法,需遍历所有样本数据与目标数据的距离,进而按升序排序从而选取最近的K个值,采用投票得出结果。

( 注意:拟合稀疏输入将覆盖此参数的设置,使用蛮力。)

leaf_size:叶的大小,针对算法为球树或KD树而言。这个设置会影响构造和查询的速度,以及存储树所需的内存。最优值取决于问题的性质。

metric:用于树的距离度量。默认度量是Minkowski,p=2等价于标准的欧几里德度量。有关可用度量的列表,可以查阅距离度量类的文档。如果度量是“预先计算的”,则假定X是距离矩阵,在拟合期间必须是平方。

p:Minkowski度量参数的参数来自sklearn.emeics.pairwise.pairwise_距离。当p=1时,这等价于使用曼哈顿距离(L1),欧几里得距离(L2)等价于p=2时,对于任意的p,则使用Minkowski_距离(L_P)。

metric_params:度量函数的附加关键字参数,设置应为dict(字典)形式。

n_jobs:要为邻居搜索的并行作业的数量。None指1,除非在 joblib.parallel_backend背景。-1意味着使用所有处理器,若要了解相关的知识应该具体查找一下。

scikit_learn (sklearn)库中NearestNeighbors(最近邻)函数的各参数说明的更多相关文章

  1. Python初探——sklearn库中数据预处理函数fit_transform()和transform()的区别

    敲<Python机器学习及实践>上的code的时候,对于数据预处理中涉及到的fit_transform()函数和transform()函数之间的区别很模糊,查阅了很多资料,这里整理一下: ...

  2. 2.sklearn库中的标准数据集与基本功能

    sklearn库中的标准数据集与基本功能 下面我们详细介绍几个有代表性的数据集: 当然同学们也可以用sklearn机器学习函数来挖掘这些数据,看看可不可以捕捉到一些有趣的想象或者是发现: 波士顿房价数 ...

  3. numpy函数库中一些常用函数的记录

    ##numpy函数库中一些常用函数的记录 最近才开始接触Python,python中为我们提供了大量的库,不太熟悉,因此在<机器学习实战>的学习中,对遇到的一些函数的用法进行记录. (1) ...

  4. 查找库中的某个函数,grep命令的用法。

    程序中调用了某个库中的函数,我想知道这个函数具体的作用,就必须去看这个库的源代码. 那么问题来了:如何从库中众多的.h文件中,得知我想要的函数在哪个文件里? 最后用grep命令成功解决. 具体用法:先 ...

  5. 支持向量机SVM知识梳理和在sklearn库中的应用

    SVM发展史 线性SVM=线性分类器+最大间隔 间隔(margin):边界的活动范围.The margin of a linear classifier is defined as the width ...

  6. STL库中的正态分布函数

    在设计抽奖一类程序中,有时会需要一种概率“有较大可能获得一个普通结果,有较小可能获得一个糟糕或极好的结果”,这就可以用正态分布函数来获得这样一个结果. STL中已经提供了一系列随机分布的函数,包括正态 ...

  7. jquery.rotate.js库中的rotate函数怎么用。

    rotate是jQuery旋转rotate插件,支持Internet Explorer 6.0+ .Firefox 2.0 .Safari 3 .Opera 9 .Google Chrome,高级浏览 ...

  8. Sklearn库例子1:Sklearn库中AdaBoost和Decision Tree运行结果的比较

    DisCrete Versus Real AdaBoost 关于Discrete 和Real AdaBoost 可以参考博客:http://www.cnblogs.com/jcchen1987/p/4 ...

  9. 机器学习之numpy库中常用的函数介绍(一)

    1. mat() mat()与array的区别: mat是矩阵,数据必须是2维的,是array的子集,包含array的所有特性,所做的运算都是针对矩阵来进行的. array是数组,数据可以是多维的,所 ...

随机推荐

  1. 从零搭建vue+express开发环境

    1.express,vue运行环境,2建express项目,3建vue项目,4将vue项目(3)输出文件拷贝到express静态根目录里 一:---------PC全局安装express 和 vue- ...

  2. Python语言——map/reduce的用法

    Python内建了map()和reduce()函数. 如果你读过Google的那篇大名鼎鼎的论文“MapReduce: Simplified Data Processing on Large Clus ...

  3. Update(Stage4):spark_rdd算子:第2节 RDD_action算子_分区_缓存:算子和分区

    一.reduce和reduceByKey: 二.:RDD 的算子总结 RDD 的算子大部分都会生成一些专用的 RDD map, flatMap, filter 等算子会生成 MapPartitions ...

  4. PhpStorm For Mac 安装使用及 Php 开发的 ‘Hello World’

    PHP全称为:Hypertext Preprocessor,中文名为:『超文本预处理 器』是一种通用开源脚本语言,主要用于Web应用开发(俗称做网站或 者做后台!) 编译软件:PHPStorm for ...

  5. 助力企业战疫提效保质,腾讯wetest远程办公工具包请查收!

    导语 疫情当前,减少个人的出行与聚集成为了抗击疫情的重要防线.不少企业为了员工的安全与战疫的目标,开始实行在家远程办公的措施.作为开发测试人员,对工作环境与设备软件的条件要求相对较高,当前在远程办公的 ...

  6. php cli 下 php.ini 配置

    // 查看phpcli 模式下 扩展 php -m // 查看php cli 版本 php -v 查看命令行的ini路径,命令行下运行 php --ini Loaded Configuration F ...

  7. 解Bug之路-记一次调用外网服务概率性失败问题的排查

    前言 和外部联调一直是令人困扰的问题,尤其是一些基础环境配置导致的问题.笔者在一次偶然情况下解决了一个调用外网服务概率性失败的问题.在此将排查过程发出来,希望读者遇到此问题的时候,能够知道如何入手. ...

  8. VSCode 出现错误 System.IO.IOException: The configured user limit (128) on the number of inotify instances has been reached.

    方案一: sudo vim /etc/sysctl.conf 增加下面内容(环境变量) fs.inotify.max_user_watches = 1638400 fs.inotify.max_use ...

  9. 内核运行时数据结构的操作(启用路由功能),sysctl内核设置命令

    LINUX系统运行时,内核数据结构数据的修改,系统提供了统一抽象的文件操作接口(命名空间操作接口)比如启用路由功能echo  1 > proc/sys/net/ipv4/ip-forward// ...

  10. loss训练技巧

    一,train loss与test loss结果分析4666train loss 不断下降,test loss不断下降,说明网络仍在学习; train loss 不断下降,test loss趋于不变, ...