最近加了一个QQ群,接触了点新的东西,包括稀疏近似,低秩近似和压缩感知等。Robust PCA中既包含了低秩,又包含了稀疏,于是以其为切入点,做了如下笔记。笔记中有的公式有比较详细的推导,希望对读者有用;有的公式则直接列写出了,待以后有新的理解再更新。由于初学,加之水平有限,文中会有疏漏错误之处,希望大家批评指正赐教。

本文推导了矩阵绝对值和范数及核范数的次梯度;求解了带正则项(和惩罚项)的绝对值,矩阵绝对值和范数及矩阵核范数的最优化问题;介绍了Robust PCA的几种算法,包括了迭代阈值算法,加速近端梯度算法(Accelerated Proximal Gradient;APG),增广Lagrange乘子法(Augmented Lagrange Multiplier;ALM)和交替方向法(alternating direction methods;ADM),注意这部分笔记内容并不成熟。

更新记录

本文持续更新!如文中有错误,或你对本文有疑问或建议,欢迎留言或发邮件至quarrying#qq.com!

2015年12月29日,更新博文,添加L0范数最优化问题求解,修正一些错误。

参考

http://math.stackexchange.com/questions/701062/derivative-of-nuclear-norm

http://math.stackexchange.com/questions/1142540/proof-that-nuclear-norm-is-convex

[2010 SIAM] A Singular Value Thresholding Algorithm for Matrix Completion

[2009 SIAM] A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems

[2008 Candes] Exact Matrix Completion Via Convex Optimization

[2009 ACM] Robust Principal Component Analysis

[2009] Sparse and low-rank matrix decomposition via alternating direction methods

[2009] The augmented Lagrange multiplier method for exact recovery of a corrupted low-rank matrices.

[2009] Fast algorithms for recovering a corrupted low-rank matrix

[2009] An Accelerated Proximal Gradient Algorithm for Nuclear Norm Regularized Least Squares problems

正文

最优化之Robust PCA的更多相关文章

  1. Robust PCA via Outlier Pursuit

    目录 引 主要结果 定理1 定理2 理论证明 构造Oracle Problem 算法 Xu H, Caramanis C, Sanghavi S, et al. Robust PCA via Outl ...

  2. 透过表象看本质!?之二——除了最小p乘,还有PCA

    如图1所示,最小p乘法求得是,而真实值到拟合曲线的距离为.那么,对应的是什么样的数据分析呢? 图1 最小p乘法的使用的误差是.真实值到拟合曲线的距离为 假如存在拟合曲线,设直线方程为.真实值到该曲线的 ...

  3. Rubost PCA 优化

    Rubost PCA 优化 2017-09-03 13:08:08 YongqiangGao 阅读数 2284更多 分类专栏: 背景建模   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA ...

  4. PCA降维笔记

    PCA降维笔记 一个非监督的机器学习算法 主要用于数据的降维 通过降维, 可以发现更便 于人类理解的特征 其他应用:可视化:去噪 PCA(Principal Component Analysis)是一 ...

  5. paper 127:机器学习中的范数规则化之(二)核范数与规则项参数选择

    机器学习中的范数规则化之(二)核范数与规则项参数选择 zouxy09@qq.com http://blog.csdn.net/zouxy09 上一篇博文,我们聊到了L0,L1和L2范数,这篇我们絮叨絮 ...

  6. L0、L1与L2范数、核范数(转)

    L0.L1与L2范数.核范数 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化.我们先简单的来理解下常用的L0.L1.L2和核范数规则化.最后聊下规则化项参数的选择问题.这里因为篇幅比较庞大 ...

  7. 矩阵分解(rank decomposition)文章代码汇总

    矩阵分解(rank decomposition)文章代码汇总 矩阵分解(rank decomposition) 本文收集了现有矩阵分解的几乎所有算法和应用,原文链接:https://sites.goo ...

  8. Matrix Factorization, Algorithms, Applications, and Avaliable packages

    矩阵分解 来源:http://www.cvchina.info/2011/09/05/matrix-factorization-jungle/ 美帝的有心人士收集了市面上的矩阵分解的差点儿全部算法和应 ...

  9. 机器学习中的规则化范数(L0, L1, L2, 核范数)

    目录: 一.L0,L1范数 二.L2范数 三.核范数 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化.我们先简单的来理解下常用的L0.L1.L2和核范数规则化.最后聊下规则化项参数的选择问 ...

随机推荐

  1. AIX如何点亮HBA卡

    不要选中分区,选择系统管理下的服务器即可 LED状态----->启动Advanced System Management(ASM) UserID:  admin Password:admin S ...

  2. centos分配IP脚本--写的第一个shell脚本

    IDC小菜鸟一枚,非科班出身.常常有客户的centos服务器需要分配15个IP甚至30个IP.每次需要手动分配十分麻烦,于是花了一天时间学了shell脚本,写了这个脚本. #!/bin/bash re ...

  3. HTML入门(HB、DW)

    一.文字内容 <b></b>  <strong></strong>     /*加粗 <i></i>   <em>& ...

  4. 写给MongoDB开发者的50条建议Tip21

    本系列文章翻译自<50 Tips and Tricks for MongoDB Developers>,暂时没有找到中文版,反正自己最近也在深入学习mongodb,所以正好拿来翻译一下.一 ...

  5. 使用Proteus模拟操作HDG12864F-1液晶屏

    在Proteus中模拟了89C52操作HDG12864F-1液晶屏,原理图如下: 一.HDG12864F-1官网信息 该液晶屏是Hantronix的产品,官网上搜索出这个型号是系列型号中的一种,各种型 ...

  6. 使用天祥TX-1C调试DS18B20温度传感器的收获

    翻查DS18B20的DataSheet编写操作函数,其过程遇到了不少坎,记下来备查. 对于单总线的DS18B20芯片,首先严格按照时序图写出正确的“写0”.“写1”和“读0.1”的基础函数,再以此写出 ...

  7. vue+.netcore可支持业务代码扩展的开发框架 VOL.Vue 2.0版本发布

    框架介绍 这是一个基于vue.element-ui.iview..netcore3.1 可支持前端.后台动态扩展业务代码快速开发框架. 框架内置定制开发的代码生成器,生成的代码不需要复制也不需要更改, ...

  8. 【Linux基础总结】Linux系统管理

    Linux系统管理 Linux磁盘管理命令.内存查看命令讲解 系统信息 查看系统 $ uname 查看系统版本号 $ uname -r 查看cpu信息 $ cat /proc/cpuinfo 查看内存 ...

  9. quartus II Warning 好的时序是设计出来的,不是约束出来的

    一.Warning (15714): Some pins have incomplete I/O assignments. Refer to the I/O Assignment Warnings r ...

  10. Quartus II 与modelsim连接不上的问题

    在Quartus II 中tools>options>General>EDA Tool Options 设置modelsim 路径 说明:不管是Quartus II 与modelsi ...