每日一题 - 剑指 Offer 49. 丑数
题目信息
时间: 2019-07-03
题目链接:Leetcode
tag:动态规划 小根堆
难易程度:中等
题目描述:
我们把只包含质因子 2、3 和 5 的数称作丑数(Ugly Number)。求按从小到大的顺序的第 n 个丑数。
示例:
输入: n = 10
输出: 12
解释: 1, 2, 3, 4, 5, 6, 8, 9, 10, 12 是前 10 个丑数。
注意
1. 1是丑数
2. n < 1690
解题思路
本题难点
丑数的定义以及查找的方式
具体思路
丑数只包含因子 2,3,5 ,因此有 “丑数 = 某较小丑数 × 某因子” (例如:10=5×2)
设已知长度为 n 的丑数序列 x1,x2,⋯,xn ,求第 n+1 个丑数 xn+1 。根根据递推性质,丑数 x n+1 只可能是以下三种情况其中之一(索引 a,b,c 为未知数):
由于 x n+1 是 最接近 x n的丑数,因此索引 a,b,c 需满足以下条件:
若索引 a,b,c 满足以上条件,则可使用递推公式计算下个丑数 xn+1 ,其为三种情况中的最小值,
即:xn+1=min(xa × 2, xb × 3, xc × 5)
动态规划思想:
状态定义:设动态规划列表 dp ,dp[i] 代表第 i+1 个丑数。
转移方程:每轮计算 dp[i] 后,需要更新索引 a,b,c 的值,使其始终满足方程条件。实现方法:分别独立判断 dp[i] 和 dp[a]×2 , dp[b]×3 , dp[c]×5 的大小关系,若相等则将对应索引 a,b,c 加 1 。
注意: dp[0]=1,第一个丑数为 1 ;
代码
class Solution {
public int nthUglyNumber(int n) {
int a = 0, b = 0, c = 0;
int[] dp = new int[n];
//第一个丑数为 1
dp[0] = 1;
for(int i = 1 ; i < n ; i++){
int n2 = 2 * dp[a];
int n3 = 3 * dp[b];
int n5 = 5 * dp[c];
dp[i] = Math.min(Math.min(n2,n3),n5);
if(dp[i] == n2){
a++;
}
if(dp[i] == n3){
b++;
}
if(dp[i] == n5){
c++;
}
}
return dp[n-1];
}
}
复杂度分析:
- 时间复杂度 O(N) : 其中 N=n ,动态规划需遍历计算 dp列表。
- 空间复杂度 O(N) : 长度为 N 的 dp 列表使用 O(N)的额外空间。
其他优秀解答
解题思路
小根堆,要去找第n个丑数,首先想到的就是一个个去生成。uglyNum=2^x ∗3^y ∗5^z ,由 1 生成了 2、3、5 ,接着 2、3、5 利用前面公式继续生成。生成过程是先放小的,并且我们需要去重,去重就需要用到 set
代码
class Solution {
public int nthUglyNumber(int n) {
//小根堆
PriorityQueue<Long> pq = new PriorityQueue<>();
Set<Long> s = new HashSet<>();
//初始化,放进堆和set,发现1要开Long数组才可以
long[] primes = new long[]{2, 3, 5};
for (long prime : primes) {
pq.offer(prime);
s.add(prime);
}
long num = 1;
for (int i = 1; i < n; i++) {
num = pq.poll();
//遍历三个因子
for (int j = 0; j < 3; j++) {
if (!s.contains(num * primes[j])) {
pq.offer(num * primes[j]);
s.add(num * primes[j]);
}
}
}
return (int) num;
}
}
每日一题 - 剑指 Offer 49. 丑数的更多相关文章
- 剑指 Offer 49. 丑数 + 小根堆 + 动态规划
剑指 Offer 49. 丑数 Offer_49 题目详情 解法一:小根堆+哈希表/HashSet 根据丑数的定义,如果a是丑数,那么a2, a3以及a*5都是丑数 可以使用小根堆存储按照从小到大排序 ...
- 力扣 - 剑指 Offer 49. 丑数
题目 剑指 Offer 49. 丑数 思路1 丑数是只包含 2.3.5 这三个质因子的数字,同时 1 也是丑数.要计算出 n 之前全部的丑数,就必须将 n 之前的每个丑数都乘以 2.3.5,选取出最小 ...
- 【Java】 剑指offer(49) 丑数
本文参考自<剑指offer>一书,代码采用Java语言. 更多:<剑指Offer>Java实现合集 题目 我们把只包含因子2.3和5的数称作丑数(Ugly Number). ...
- [剑指offer] 49. 丑数
通俗易懂的解释: 首先从丑数的定义我们知道,一个丑数的因子只有2,3,5,那么丑数p = 2 ^ x * 3 ^ y * 5 ^ z,换句话说一个丑数一定由另一个丑数乘以2或者乘以3或者乘以5得到,那 ...
- 剑指 Offer 49. 丑数
题目描述 我们把只包含质因子 2.3 和 5 的数称作丑数(Ugly Number).求按从小到大的顺序的第 n 个丑数. 示例: 输入: n = 10 输出: 12 解释: 1, 2, 3, 4, ...
- 【剑指Offer】丑数 解题报告
[剑指Offer]丑数 解题报告(Python) 标签(空格分隔): 剑指Offer 题目地址:https://www.nowcoder.com/ta/coding-interviews 题目描述: ...
- 【剑指offer】丑数
把只包含因子2.3和5的数称作丑数(Ugly Number).例如6.8都是丑数,但14不是,因为它包含因子7. 习惯上我们把1当做是第一个丑数.求按从小到大的顺序的第N个丑数. leetcode上也 ...
- Go语言实现:【剑指offer】丑数
该题目来源于牛客网<剑指offer>专题. 把只包含质因子2.3和5的数称作丑数(Ugly Number).例如6.8都是丑数,但14不是,因为它包含质因子7.习惯上我们把1当做是第一个丑 ...
- 《剑指offer》丑数
本题来自<剑指offer> 反转链表 题目: 思路: C++ Code: Python Code: 总结:
随机推荐
- Android中WebView如何加载JavaScript脚本
主Activity和XML布局,末尾附上效果图 package com.example.myapplication; import androidx.appcompat.app.AppCompatAc ...
- (十)DVWA之SQL Injection--测试分析(Impossible)
DVWA之SQL Injection--测试分析(Impossible) 防御级别为Impossible的后端代码:impossible.php <?php if( isset( $_GET[ ...
- vue axios封装
前言: 对第三方库进行二次封装和抽离到统一模块,项目面对自己的模块进行开发.如果有一天更换库,只需要修改自己模块中的代码,无需对整个项目进行重构. 将axios网络请求库封装到network文件下的r ...
- 痞子衡嵌入式:链接函数到8字节对齐地址或可进一步提升i.MXRT内核执行性能
大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家分享的是i.MXRT上进一步提升代码执行性能的经验. 今天跟大家聊的这个话题还是跟痞子衡最近这段时间参与的一个基于i.MXRT1170的大项目有 ...
- ODEINT 求解常微分方程(4)
import numpy as np from scipy.integrate import odeint import matplotlib.pyplot as plt # function tha ...
- @atcoder - AGC018F@ Two Trees
目录 @description@ @solution@ @accepted code@ @details@ @description@ 给定两棵树 A, B.现你需要构造一组值 (X1, X2, .. ...
- WEditor(元素定位工具)安装和定位界面元素
1. 安装adb(安装方法——百度网盘(无邪)) 2. 安装python-uiautomator2 pip install --pre -U uiautomator2 3. 手机设备安装atx-ag ...
- mysql常用基础指令大全
mysql指令 启动 net start mysql 退出mysql quit 登录 mysql -uroot -p 逻辑非 not ! 逻辑与 and && 或者 or || 逻辑异 ...
- Android学习笔记.9.png格式图片
.9.png可以保证图片在合适的位置进行局部拉伸,避免了图片全局缩放造成的图片变形问题.AS提供了制作点9图片的便捷入口,并且会检查你的.9图是否有不合理的拉伸区域. 选中图片点击create 9-p ...
- 【String注解驱动开发】面试官让我说说:如何使用FactoryBean向Spring容器中注册bean?
写在前面 在前面的文章中,我们知道可以通过多种方式向Spring容器中注册bean.可以使用@Configuration结合@Bean向Spring容器中注册bean:可以按照条件向Spring容器中 ...