首先是模型参数和网络结构的保存

#coding:utf-8
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('MNIST_data',one_hot=True)
#每个批次的大小
batch_size = 100
n_batch = mnist.train._num_examples // batch_size
#定义两个placeholder
x = tf.placeholder(tf.float32, [None,784],name='x-input' ) #模型输入的地方加名字
y = tf.placeholder(tf.float32,[None,10])
keep_prob = tf.placeholder(tf.float32,name='keepProb') def weight_variable(shape):
initial = tf.truncated_normal(shape,stddev=0.1) #生成一个截断的正态分布
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1,shape = shape)
return tf.Variable(initial)
#卷基层
def conv2d(x,W):
return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')
#池化层
def max_pool_2x2(x):
return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME') #改变x的格式转为4D的向量[batch,in_height,in_width,in_channels]
x_image = tf.reshape(x, [-1,28,28,1]) #初始化第一个卷基层的权值和偏置
W_conv1 = weight_variable([5,5,1,32]) #5*5的采样窗口 32个卷积核从一个平面抽取特征 32个卷积核是自定义的
b_conv1 = bias_variable([32]) #每个卷积核一个偏置值 #把x_image和权值向量进行卷积,再加上偏置值,然后应用于relu激活函数
h_conv1 = tf.nn.relu(conv2d(x_image,W_conv1)+b_conv1)
h_pool1 = max_pool_2x2(h_conv1) #进行max-pooling #初始化第二个卷基层的权值和偏置
W_conv2 = weight_variable([5,5,32,64]) # 5*5的采样窗口 64个卷积核从32个平面抽取特征 由于前一层操作得到了32个特征图
b_conv2 = bias_variable([64]) #每一个卷积核一个偏置值 #把h_pool1和权值向量进行卷积 再加上偏置值 然后应用于relu激活函数
h_conv2 = tf.nn.relu(conv2d(h_pool1,W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2) #进行max-pooling #28x28的图片第一次卷积后还是28x28 第一次池化后变为14x14
#第二次卷积后 变为14x14 第二次池化后变为7x7
#通过上面操作后得到64张7x7的平面 #初始化第一个全连接层的权值
W_fc1 = weight_variable([7*7*64,1024])#上一层有7*7*64个神经元,全连接层有1024个神经元
b_fc1 = bias_variable([1024]) #1024个节点 #把第二个池化层的输出扁平化为一维
h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64])
#求第一个全连接层的输出
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1)+b_fc1) #keep_prob用来表示神经元的输出概率 h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob) #初始化第二个全连接层
W_fc2 = weight_variable([1024,10])
b_fc2 = bias_variable([10]) #计算输出
prediction = tf.nn.softmax(tf.matmul(h_fc1_drop,W_fc2)+b_fc2, name='output') #模型输出的地方加名字 #交叉熵代价函数
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction)) #使用AdamOptimizer进行优化
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
#结果存放在一个布尔列表中
correct_prediction = tf.equal(tf.argmax(prediction,1),tf.argmax(y,1)) #argmax返回一维张量中最大的值所在的位置
#求准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for epoch in range(10):
for batch in range(n_batch):
batch_xs,batch_ys = mnist.train.next_batch(batch_size)
sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys,keep_prob:0.7})
acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels,keep_prob:1.0})
print ("Iter "+ str(epoch) + ", Testing Accuracy= " + str(acc))
#保存模型参数与网络结构
output_graph_def = tf.graph_util.convert_variables_to_constants(sess,sess.graph_def,output_node_names=['output'])
#保存模型到目录下的model文件夹中
with tf.gfile.FastGFile('/home/bayes/mymodel.pb',mode='wb') as f:
f.write(output_graph_def.SerializeToString())

  

结果

Iter 0, Testing Accuracy= 0.8616
Iter 1, Testing Accuracy= 0.9663
Iter 2, Testing Accuracy= 0.9776
Iter 3, Testing Accuracy= 0.9815
Iter 4, Testing Accuracy= 0.985
Iter 5, Testing Accuracy= 0.9863
Iter 6, Testing Accuracy= 0.9871
Iter 7, Testing Accuracy= 0.9895
Iter 8, Testing Accuracy= 0.9878
Iter 9, Testing Accuracy= 0.9894
Converted 8 variables to const ops.

载入模型参数与网络结构,并且预测图片

#coding:utf-8
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
from PIL import Image,ImageFilter
mnist = input_data.read_data_sets('MNIST_data',one_hot=True)
#定义一个placeholder
y = tf.placeholder(tf.float32,[None,10]) def imageprepare(argv): # 该函数读一张图片,处理后返回一个数组,进到网络中预测
im = Image.open(argv).convert('L')
width = float(im.size[0])
height = float(im.size[1])
newImage = Image.new('L', (28, 28), (255)) # creates white canvas of 28x28 pixels if width > height: # check which dimension is bigger
# Width is bigger. Width becomes 20 pixels.
nheight = int(round((20.0 / width * height), 0)) # resize height according to ratio width
if nheight == 0: # rare case but minimum is 1 pixel
nheight = 1
# resize and sharpen
img = im.resize((20, nheight), Image.ANTIALIAS).filter(ImageFilter.SHARPEN)
wtop = int(round(((28 - nheight) / 2), 0)) # caculate horizontal pozition
newImage.paste(img, (4, wtop)) # paste resized image on white canvas
else:
# Height is bigger. Heigth becomes 20 pixels.
nwidth = int(round((20.0 / height * width), 0)) # resize width according to ratio height
if (nwidth == 0): # rare case but minimum is 1 pixel
nwidth = 1
# resize and sharpen
img = im.resize((nwidth, 20), Image.ANTIALIAS).filter(ImageFilter.SHARPEN)
wleft = int(round(((28 - nwidth) / 2), 0)) # caculate vertical pozition
newImage.paste(img, (wleft, 4)) # paste resized image on white canvas # newImage.save("sample.png") tv = list(newImage.getdata()) # get pixel values # normalize pixels to 0 and 1. 0 is pure white, 1 is pure black.
tva = [(255 - x) * 1.0 / 255.0 for x in tv]
return tva
#载入模型
with tf.gfile.FastGFile('/home/bayes/mymodel.pb','rb' ) as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
tf.import_graph_def(graph_def,name='') with tf.Session() as sess:
output = sess.graph.get_tensor_by_name('output:0')
#结果存放在一个布尔列表中
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(output,1)) #argmax返回一维张量中最大的值所在的位置
#求准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
#训练的时候加了dropout,载入模型进行预测或者计算准确率的时候一定记得也加入dropout
print (sess.run(accuracy,feed_dict={'x-input:0':mnist.test.images, y:mnist.test.labels,'keepProb:0':1.0}))
array = imageprepare('/home/bayes/logs/3.jpg')
prediction = tf.argmax(output,1)
finalClass = sess.run(prediction,feed_dict={'x-input:0':[array],'keepProb:0':1.0})
print('The digits in this image is:%d' % finalClass)

手写数字图片3

结果

I tensorflow/core/common_runtime/gpu/gpu_device.cc:906] DMA: 0
I tensorflow/core/common_runtime/gpu/gpu_device.cc:916] 0: Y
I tensorflow/core/common_runtime/gpu/gpu_device.cc:975] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce GTX 1080 Ti, pci bus id: 0000:03:00.0)
0.9894
The digits in this image is:3

Tensorflow学习教程------模型参数和网络结构保存且载入,输入一张手写数字图片判断是几的更多相关文章

  1. tensorflow学习之(十)使用卷积神经网络(CNN)分类手写数字0-9

    #卷积神经网络cnn import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #数据包,如 ...

  2. 一文全解:利用谷歌深度学习框架Tensorflow识别手写数字图片(初学者篇)

    笔记整理者:王小草 笔记整理时间2017年2月24日 原文地址 http://blog.csdn.net/sinat_33761963/article/details/56837466?fps=1&a ...

  3. 吴裕雄 python 神经网络——TensorFlow 卷积神经网络手写数字图片识别

    import os import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_N ...

  4. MindSpore手写数字识别初体验,深度学习也没那么神秘嘛

    摘要:想了解深度学习却又无从下手,不如从手写数字识别模型训练开始吧! 深度学习作为机器学习分支之一,应用日益广泛.语音识别.自动机器翻译.即时视觉翻译.刷脸支付.人脸考勤--不知不觉,深度学习已经渗入 ...

  5. SVM学习笔记(二)----手写数字识别

    引言 上一篇博客整理了一下SVM分类算法的基本理论问题,它分类的基本思想是利用最大间隔进行分类,处理非线性问题是通过核函数将特征向量映射到高维空间,从而变成线性可分的,但是运算却是在低维空间运行的.考 ...

  6. Tensorflow学习教程------利用卷积神经网络对mnist数据集进行分类_利用训练好的模型进行分类

    #coding:utf-8 import tensorflow as tf from PIL import Image,ImageFilter from tensorflow.examples.tut ...

  7. Android+TensorFlow+CNN+MNIST 手写数字识别实现

    Android+TensorFlow+CNN+MNIST 手写数字识别实现 SkySeraph 2018 Email:skyseraph00#163.com 更多精彩请直接访问SkySeraph个人站 ...

  8. 100天搞定机器学习|day39 Tensorflow Keras手写数字识别

    提示:建议先看day36-38的内容 TensorFlow™ 是一个采用数据流图(data flow graphs),用于数值计算的开源软件库.节点(Nodes)在图中表示数学操作,图中的线(edge ...

  9. TensorFlow 卷积神经网络手写数字识别数据集介绍

    欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 手写数字识别 接下来将会以 MNIST 数据集为例,使用卷积层和池 ...

随机推荐

  1. Sklearn 速查

    ## 版权所有,转帖注明出处 章节 SciKit-Learn 加载数据集 SciKit-Learn 数据集基本信息 SciKit-Learn 使用matplotlib可视化数据 SciKit-Lear ...

  2. MongoDB Projection

    版权所有,未经许可,禁止转载 章节 MongoDB 入门 MongoDB 优势 MongoDB 安装 MongoDB 数据建模 MongoDB 创建数据库 MongoDB 删除数据库 MongoDB ...

  3. BZOJ 3442 学习小组

    题解: 神建图 普通的二分图费用流建完后 添加学生x->t 容量为k-1的边 表示尽量让x参加一个活动,剩下的k-1次机会可以不参加 #include<iostream> #incl ...

  4. 解决 .NET CORE3.0 MVC视图层不即时编译

    微软官方文档 Razor 编译 Razor SDK 默认启用 Razor 文件的生成时和发布时编译. 启用后,运行时编译将补充生成时编译,允许更新 Razor 文件(如果对其进行编辑). 运行时编译 ...

  5. flink和spark Streaming中的Back Pressure

    Spark Streaming的back pressure 在讲flink的back pressure之前,我们先讲讲Spark Streaming的back pressure.Spark Strea ...

  6. Vue v-bind

    指令作用: 给元素的属性赋值 它是一个 vue 指令,用于绑定 html 属性 写法: 正常写法 <div v-bind:原属性名="变量||"常量""& ...

  7. CodeForces - 131C The World is a Theatre(组合数)

    题意:已知有n个男生,m个女生.现在要选t个人,要求有至少4个男生,至少1个女生,求有多少种选法. 分析: 1.展开,将分子中的m!与分母中n!相约,即可推出函数C. #pragma comment( ...

  8. IE8Get请求中文不兼容:encodeURI的使用

    IE8Get请求中文不兼容:encodeURI的使用 在开发过程中遇到在IE8下,请求出错. 后发现Get请求中含有中文字符. 使用js自带的encodeURI函数对中文进行编码,问题解决. enco ...

  9. Idea 中的快捷键(mac)

    Mac键盘符号和修饰键说明 ⌘ Command ⇧ Shift ⌥ Option ⌃ Control ↩︎ Return/Enter ⌫ Delete ⌦ 向前删除键(Fn+Delete) ↑ 上箭头 ...

  10. 在linux上部署多个tomcat

    1.vim  /etc/profile ##########first tomcat########### CATALINA_BASE=/usr/apache-tomcat--fore CATALIN ...